首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: The communication provides a novel and alternative route to generate chemically tethered binary polymer‐brush pattern through two‐step surface‐initiated atomic‐transfer radical polymerization (SI‐ATRP). Polymer brush‐1 was prepared by SI‐ATRP, passivated by a reaction with NaN3, and etched with UV irradiation through a transmission electron microscopy grid to create exposed sites for the subsequently attached initiator on which polymer brush‐2 was grown.

Schematic representation of the resultant binary polymer brush patterns.  相似文献   


2.
A PTFE film surface was modified using a combined plasma/ozone‐activated process. The modified PTFE film was further reacted with 2‐bromoisobutyryl bromide to incorporate ATRP initiators in the film surface. Surface‐initiated ATRP on PTFE films was performed using sodium styrene sulfate as a monomer. The poly(sodium styrene sulfate) chain length grafted onto PTFE film surfaces increased with increasing reaction time. Analysis using X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and a contact angle analyzer gave evidence of the success of the PTFE surface modifications.

  相似文献   


3.
A method for growing polymers directly from the surface of graphene oxide is demonstrated. The technique involves the covalent attachment of an initiator followed by the polymerization of styrene, methyl methacrylate, or butyl acrylate using atom transfer radical polymerization (ATRP). The resulting materials were characterized using a range of techniques and were found to significantly improve the solubility properties of graphene oxide. The surface‐grown polymers were saponified from the surface and also characterized. Based on these results, the ATRP reactions were determined to proceed in a controlled manner and were found to leave the structure of the graphene oxide largely intact.

  相似文献   


4.
Summary: Oligo(ethylene glycol) methacrylate (OEGMA) was grafted from silicon wafer surfaces by surface‐initiated atom transfer radical polymerization (ATRP) with CuI Br/2,2′‐bipyridine (bpy) as a catalyst and various water/alcohol mixtures as solvents. The ellipsometric thickness of the poly(OEGMA) layer on the surface increased linearly with monomer conversion in solution. High graft densities were achieved in alcohols. The graft density of poly(OEGMA) in methanol was found to be 0.26 chains · nm−2, which is 50% higher than that in water/methanol (30:70, v/v). The differences in graft density were correlated to the conformation of tethered poly(OEGMA) chains. Large poly(OEGMA) coils on the surface in the presence of water limited the access of initiation sites to the catalyst complex and monomer molecules.

Development of poly(OEGMA) layer thickness on the silicon surface vs monomer conversion.  相似文献   


5.
Summary: The living polymerization of N,N‐dimethylacrylamide was achieved by atom transfer radical polymerization catalyzed by copper chloride complexed with a new ligand, N,N′‐bis(pyridin‐2‐ylmethyl 3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED). With methyl 2‐chloropropionate as the initiator, the polymerization reached high conversions (> 90%) at 80 °C and 100 °C, producing polymers with very close to theoretical values and low polydispersity. The ligand, temperature, and copper halide strongly affected the activity and control of the polymerization.

PDMA molecular weight and polydispersity dependence on the DMA conversion in the DMA bulk polymerizations at different temperatures: DMA/CuCl/MCP/BPED = 100/1/1/1, 100 °C (♦, ⋄); 80 °C (▴, ▵); 60 °C (▪, □); and DMA/CuCl/MCP/BPED = 100/1/1/2, 80 °C (•, ○).  相似文献   


6.
原子转移自由基聚合(ATRP)是目前为止最具工业化应用前景的“活性”/可控自由基聚合之一。近年来对其广泛的研究使这一技术逐渐向着“提高可操作性”与“尽可能地减少金属催化剂用量”方面发展;与此同时,诞生了不同催化体系的ATRP衍生技术,如反向原子转移自由基聚合(RATRP)、正向反向同时引发的原子转移自由基聚合(SR&NI ATRP)、引发剂连续再生催化剂原子转移自由基聚合(ICAR ATRP)、电子转移生成催化剂的原子转移自由基聚合(AGET ATRP)和电子转移再生催化剂原子转移自由基聚合(ARGET ATRP)等多种基于ATRP的新方法。本文概述了这几种ATRP体系的发展历程与基本原理,并对其国内外的最新研究进展进行了综述。  相似文献   

7.
张晓鸿  袁丽  杨东  胡建华  陈晓枫  王利 《化学学报》2009,67(16):1897-1902
以具有较高活性的酚氧基联烯基醚(POA)和对叔丁基酚氧基联烯基醚(t-BuPOA)为研究对象, 研究了不同引发 剂/配体体系对其原子转移自由基(ATRP)聚合行为的影响. 发现在2-溴代丙酸甲酯/溴化亚铜/4,4’-二庚基联吡啶(2-MBP/CuBr/dHbpy)和对甲苯磺酰氯/溴化亚铜/三-(N,N-二甲基氨基乙基)胺(p-TsCl/CuBr/Me6TREN)两种ATRP反应体系中, POA的聚合都遵循ATRP反应的机理.  相似文献   

8.
Summary: Mesoporous silica was used as substrate for the grafting of alkyl halides initiators. The control over the surface‐initiated polymerization of styrene and MMA, in terms of molar mass and molar mass distribution, was successfully achieved using an ATRP mechanism. The occurrence of the polymerization inside the mesopores was confirmed by thermogravimetric analysis.

Transmission electron microscopy and schematic representation of mesoporous silica functionalized by the anchored iniator (left) and the grafted polymer (right).  相似文献   


9.
Summary: Controlled polymerization of N‐isopropylacrylamide (NIPAAM) was achieved by atom transfer radical polymerization (ATRP) using ethyl 2‐chloropropionate (ECP) as initiator and CuCl/tris(2‐dimethylaminoethyl)amine (Me6TREN) as a catalytic system. The polymerization was carried out in DMF:water 50:50 (v/v) mixed solvent at 20 °C. The first order kinetic plot was linear up to 92% conversion. Controlled molecular weights up to 2.2 × 104 and low polydispersities (1.19) were obtained. The living character of the polymerization was also demonstrated by self‐blocking experiments. Block copolymers with N,N‐dimethylacrylamide (DMAAM) and 3‐sulfopropyl methacrylate (SPMA) were successfully prepared.

Molecular weights and polydispersities of polyNIPAAM versus NIPAAM conversion for two different degrees of polymerization.  相似文献   


10.
过渡金属催化的原子转移自由基聚合(ATRP)是合成结构可控聚合物的重要方法之一,尽管一系列改进ATRP方法可将催化剂的浓度降至ppm级,但不可避免的金属残留仍然是制约ATRP应用的主要瓶颈。近年来,科学家提出并发展了有机催化原子转移自由基聚合(O-ATRP),从根本上规避了金属催化剂的使用与残留。本文对有机催化原子转移自由基聚合的概念、催化体系和聚合机理进行了介绍,同时综述了该新聚合方法在高分子合成与材料制备方面的应用。  相似文献   

11.
Polymer chains are grafted from silica nanobeads. The method consists in grafting first the initiator molecules on the silica surface. Then, the polymerization of styrene or n-butyl methacrylate using Atom Transfer Radical Polymerization, is conducted. The nanoparticles are kept in solution during the whole process to avoid irreversible aggregation. The state of dispersion of the grafted silica nanoparticles is followed by Small Angle Neutron Scattering, as well as the quantity and the spatial organisation of the polymer. This is done during the functionalisation and the polymerization, but also after purification where free polymer chains are eliminated. This permits to reach a quantitative level of SANS analysis from these purified particles, which is compared to chemical data given by Size Exclusion Chromatography and Thermogravimetric analysis.  相似文献   

12.
Summary: The first monomode microwave‐assisted atom transfer radical polymerization (ATRP) is reported. The ATRP of methyl methacrylate was successfully performed with microwave heating, which was well controlled and provided almost the same results as experiments with conventional heating, demonstrating the absence of any “microwave effect” in ATRP (in contrast to several literature reports). Furthermore, we found that the main advantage of the microwave‐assisted reactions over conventional reactions, i.e., a significant increase of reaction rates, only had its limited application in ATRP, even in very slow ATRP systems with high targeted molecular weights.

Comparison of the kinetic plots of the ATRP of MMA ([MMA]0/[EBIB]0/[CuCl]0/[NHPMI]0 = 200:1:1:3, MMA/DMF = 1:1 v/v) carried out at 90 °C in DMF with microwave (▴) and conventional heating (•), respectively.  相似文献   


13.
Atom transfer radical polymerization (ATRP) is a robust method for the preparation of well‐defined (co)polymers. This process has also enabled the preparation of a wide range of polymer brushes where (co)polymers are covalently attached to either curved or flat surfaces. In this review, the general methodology for the synthesis of polymer brushes from flat surfaces, polymers and colloids is summarized focusing on reports using ATRP. Additionally, the morphology of ultrathin films from polymer brushes is discussed using atomic force microscopy (AFM) and other techniques to confirm the formation of nanoscale structure and organization.

Formation of polymer brushes by ATRP.  相似文献   


14.
Chaozhan Wang  Sa Zhao  Yinmao Wei 《中国化学》2012,30(10):2473-2482
Poly(glycidylmethacrylate) (PGMA) brushes were grafted from chloromethylated polysulfone (CMPSF) membrane surface by surface‐initiated atom transfer radical polymerization (SI‐ATRP), and the grafting was followed by hydrolysis of epoxy groups in the grafting chains to improve the membrane's hydrophilic property. Fourier transform infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS) measurements confirmed the successful grafting and hydrolysis of PGMA. The grafting degree of the monomer, measured by periodic acid titration and gravimetric analysis, increased linearly with the polymerization time, while the static water contact angle of the membrane grafted with PGMA or hydrolyzed PGMA linearly decreased. In comparison with the PGMA‐grafted membranes, the hydrolyzed PGMA‐grafted membranes possess stronger hydrophilicity as indicated by their contact angle and hydration capacity, and as a result they have an improved antifouling property. Therefore, the control of the hydrophilicity of PSF membrane could be realized through adjusting the polymerization time and transforming the functional groups in the grafting chain.  相似文献   

15.
Amphiphilic star shaped polymers with poly(ethylene oxide) (PEO) arms and cross‐linked hydrophobic core were synthesized in water via either conventional free radical polymerization (FRP) or atom transfer radical polymerization (ATRP) techniques using a simple “arm‐first” method. In FRP, PEO based macromonomers (MM) were used as arm precursors, which were then cross‐linked by divinylbenzene (DVB) using 2,2′‐azoisobutyronitrile (AIBN). Uniform star polymers ( < 1.2) were achieved through adjustment of the ratio of PEO MM, DVB, and AIBN. While in case of ATRP, both PEO MM, and PEO based macroinitiator (MI) were used as arm precursors with ethylene glycol diacrylate as cross‐linker. Even more uniform star polymers with less contamination by low MW polymers were obtained, as compared to the products synthesized by FRP.

  相似文献   


16.
Hybrid nanoparticles with a silica core and grafted poly(methyl methacrylate) (PMMA) or poly(n‐butyl methacrylate) (PBMA) chains were prepared via activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) at room temperature under high pressure. Due to enhanced propagation rate constant and reduced termination rate constant for polymerizations conducted under high pressure, the rate of polymerization was increased, while preserving good control over polymerization when compared to ATRP under ambient pressure. Molecular weights of greater than 1 million were obtained. The PMMA and PBMA brushes exhibited “semi‐diluted” or “diluted” brush architecture with the highest grafting densities ≈0.3 chain·nm−2.

  相似文献   


17.
18.
Polymersomes that encapsulate a hydrophilic polymer are prepared by conducting biocatalytic atom transfer radical polymerization (ATRP) in these hollow nanostructures. To this end, ATRPase horseradish peroxidase (HRP) is encapsulated into vesicles self‐assembled from poly(dimethylsiloxane)‐block‐poly(2‐methyl‐2‐oxazoline) (PDMS‐b‐PMOXA) diblock copolymers. The vesicles are turned into nanoreactors by UV‐induced permeabilization with a hydroxyalkyl phenone and used to polymerize poly(ethylene glycol) methyl ether acrylate (PEGA) by enzyme‐catalyzed ATRP. As the membrane of the polymersomes is only permeable for the reagents of ATRP but not for macromolecules, the polymerization occurs inside of the vesicles and fills the polymersomes with poly(PEGA), as evidenced by 1H NMR. Dynamic and static light scattering show that the vesicles transform from hollow spheres to filled spheres during polymerization. Transmission electron microscopy (TEM) and cryo‐TEM imaging reveal that the polymersomes are stable under the reaction conditions. The polymer‐filled nanoreactors mimic the membrane and cytosol of cells and can be useful tools to study enzymatic behavior in crowded macromolecular environments.

  相似文献   


19.
原子转移自由基细乳液聚合*   总被引:2,自引:0,他引:2  
本文从正向、反向、同时正向/反向、电子转移活化剂等不同原子转移自由基聚合(ATRP)细乳液引发体系的角度,综述了近年来国内外关于ATRP细乳液聚合的研究进展。在细乳液体系中进行正向ATRP,聚合可控性不理想,反向ATRP相对适合于细乳液体系,其缺点是表面活性剂用量较大。同时正向/反向引发体系的ATRP中催化剂用量大为减少,并且聚合具有良好的可控性;电子转移活化剂(AGET)ATRP是通过电子转移反应来还原过渡金属的氧化态,克服了同时正向/反向ATRP中需要引入自由基引发剂的缺点。  相似文献   

20.
A new synthetic approach for the preparation of block copolymers by mechanistic transformation from atom transfer radical polymerization (ATRP) to visible light‐induced free radical promoted cationic polymerization is described. A series of halide end‐functionalized polystyrenes with different molecular weights synthesized by ATRP were utilized as macro‐coinitiators in dimanganese decacarbonyl [Mn2(CO)10] mediated free radical promoted cationic photopolymerization of cyclohexene oxide or isobutyl vinyl ether. Precursor polymers and corresponding block copolymers were characterized by spectral, chromatographic, and thermal analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号