共查询到20条相似文献,搜索用时 15 毫秒
1.
Yongxin Wang Jianping Deng Wenbin Zhong Lingbing Kong Wantai Yang 《Macromolecular rapid communications》2005,26(22):1788-1793
Summary: Superhydrophilic modification of poly(propylene) and poly(ethylene terephthalate) films' surfaces was realized by the UV‐initiated surface photografting of a N‐vinyl pyrrolidone/N,N′‐methylenebisacrylamide inverse microemulsion. AFM characterization of the treated films' surface revealed that it was the grafted quasi‐bimodal (ca. 45 and 110 nm) particles of cross‐linked poly(N‐vinyl pyrrolidone) that led to superhydrophilicity of the surface. The grafted nanometer‐scale particles showed little influence on the transparency of the substrate's surface, but endowed long‐term stability to the superhydrophilicity.
2.
Daniel Nystrm Per Antoni Eva Malmstrm Mats Johansson Michael Whittaker Anders Hult 《Macromolecular rapid communications》2005,26(7):524-528
Summary: Organic‐inorganic hybrid materials consisting of nanosized silica particles with surface grafted PS or PS‐b‐PMMA were synthesized using ATRP. These hybrid materials were used in the fabrication of highly‐ordered isoporous membranes. Optical characterization revealed that the membranes consisted of hexagonally ordered pores of uniform size. The combination of an open pore structure and high surface area makes isoporous membranes into materials of high interest in fields as biotechnology and photonics.
3.
Yong Wang Hao Zou Qiang Fu Gong Zhang Kaizhi Shen Ralf Thomann 《Macromolecular rapid communications》2002,23(13):749-752
The morphology of a PP/LLDPE blend (50 : 50) by phase dissolution at high shear rate combined with dynamic packing injection molding at low shear rate was investigated by atomic force microscopy. Phase dissolution under high shear rate is manifested by a co‐continuous two‐phase structure that could be broken down to an island‐like structure when a low shear rate is applied via dynamic packing injection molding or simply by manual deformation. 相似文献
4.
Manabu Tanaka Shingo Imai Takashi Tanii Yoshiteru Numao Naonobu Shimamoto Iwao Ohdomari Hiroyuki Nishide 《Journal of polymer science. Part A, Polymer chemistry》2007,45(3):521-530
A magnetically active, purely organic dot array was formed by the selective deposition of polyradical nanoparticles on array‐like‐formed pits on a silicon substrate. The nanometer‐sized polyradical particles, poly(4‐methacryoyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl), were prepared by the emulsion polymerization of 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐acetoxyl followed by a deprotection reaction and oxidation in air. The size (diameter) and radical spin concentration of the polyradical nanoparticles were tunable between the polymerization and oxidation conditions. Electrochemical studies revealed the redox property of the polyradical nanoparticles. The magnetic response image of the polyradical nanoparticles was obtained by magnetic force microscopy, reflecting their radical spin concentrations. These results suggested a possible approach for the use of organic polyradical nanoparticles as organic magnetic dot arrays. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 521–530, 2007 相似文献
5.
Jaeyoen Jung Ki Woo Kim Kyunga Na Marian Kaholek Stefan Zauscher Jinho Hyun 《Macromolecular rapid communications》2006,27(10):776-780
Summary: This paper demonstrates a new, reliable, and simple method for fabricating micropatterned nanoparticle arrays that can serve as templates for the surface‐initiated polymerization of polymer brushes. As a proof of concept, we micropatterned gold nanoparticles (Au‐NPs, ≈10 nm) onto glass, silicon, polystyrene, and gold surfaces by a simple three‐step process: (1) microcontact printing of soluble polymer, (2) incubation with a solution of Au‐NPs, and (3) lift‐off of the template in a mixture of ethanol and deionized water. 40 µm wide features were successfully fabricated without any significant defects or nonspecific adsorption on the background. To demonstrate the utility of these Au‐NP templates, we subsequently polymerized N‐isopropylacrylamide by surface‐initiated polymerization, using a surface‐bound initiator.
6.
Jeffrey Pyun Tomasz Kowalewski Krzysztof Matyjaszewski 《Macromolecular rapid communications》2003,24(18):1043-1059
Atom transfer radical polymerization (ATRP) is a robust method for the preparation of well‐defined (co)polymers. This process has also enabled the preparation of a wide range of polymer brushes where (co)polymers are covalently attached to either curved or flat surfaces. In this review, the general methodology for the synthesis of polymer brushes from flat surfaces, polymers and colloids is summarized focusing on reports using ATRP. Additionally, the morphology of ultrathin films from polymer brushes is discussed using atomic force microscopy (AFM) and other techniques to confirm the formation of nanoscale structure and organization.
7.
Adelaida Andoni John C. Chadwick Hans J. W. Niemantsverdriet Peter C. Thüne 《Macromolecular rapid communications》2007,28(14):1466-1471
A method for the preparation of well‐defined crystallites of MgCl2‐supported Ziegler‐Natta catalysts on Si wafers has been developed. This has been achieved by the spin‐coating of a MgCl2 solution onto a flat Si wafer, followed by controlled crystal growth to give well‐defined MgCl2 · nEtOH crystallites. The growth of the crystallites on the flat silica facilitates their characterization using electron and scanning probe microscopy. The relative proportions of 120° and 90° edge angles indicate the preference for the formation of a particular crystallite face for the MgCl2. Polyethylene has been identified to be formed on the lateral faces of the crystallite.
8.
Chaiwat Norakankorn Qinmin Pan Garry L. Rempel Suda Kiatkamjornwong 《Macromolecular rapid communications》2007,28(9):1029-1033
The synthesis of nanosized poly(methyl methacrylate) initiated by 2,2′‐azoisobutyronitrile via differential microemulsion polymerization has been investigated. Poly(methyl methacrylate) with a molecular weight of around 1 × 106 and a particle size of about 20 nm was achieved under mild reaction conditions. A typical condition was that the surfactant amount required could be as low as 1/130 of the monomer amount in weight, and the surfactant/water ratio could be as low as 1/600, which is much less than the corresponding amounts reported in the literature. “Molecular bricks”, i.e., nanoparticles in which there are only one or two polymer chains, can be achieved using mild conditions by differential microemulsion polymerization, which may have potential applications for making molecular devices.
9.
OTS自组装单分子膜在玻璃表面形成过程的AFM研究 总被引:7,自引:0,他引:7
运用原子力显微镜研究了十八烷工碱氯硅烷在玻璃表面自组装形成单分子膜的过程。通过对样品表面的显微图像,表面平均粗糙度及前进接触角的测量分析,揭示了自组装单分子膜在玻璃表面的生长规律,并探索反应初期玻璃表面的吸附特点。 相似文献
10.
11.
Ali Dirani Fabrice Stehlin Ihab Dika Arnaud Spangenberg Nathan Grumbach Jean‐Louis Gallani Bertrand Donnio Romain Greget Sylvie Begin‐Colin Arnaud Demortire Olivier Soppera 《Macromolecular rapid communications》2011,32(20):1627-1633
DUV interferometric lithography and diblock copolymer self‐organization have successfully been combined to provide a simple and highly collective nanopatterning technique enabling the organization of nanoparticles over several orders of magnitude, from nanometre to millimetre. The nanostructural changes at the surface of the polymer film after thermal annealing have been monitored by AFM and the process parameters optimized for obtaining a long‐range organization of the lamellar domains. In particular, the impact of the annealing conditions and geometric parameters of the substrate patterns have been investigated. The nanopatterns resulting from the lamellar demixion of (PS‐b‐MMA) were used for a controlled deposition of nanoparticles. The affinity of the hydrophobic particles for the PS block was demonstrated, opening new doors towards the preparation of high‐density arrays of nanoparticles with potential applications in data storage.
12.
Surface morphologies formed by the phase segregation of poly(styrene‐b‐ethylene/butylene‐b‐styrene) (SEBS)/poly(methyl methacrylate) (PMMA) blend films prepared via spin coating on mica substrates were studied with atomic force microscopy accompanied by a solvent extraction treatment, X‐ray photoelectron spectroscopy, and contact‐angle measurements. Three kinds of surface structures of films were observed. Besides the ribbonlike morphology and the dispersed domains in a continuous matrix that are common in this field, we found a special interlocking layer structure characterized by a smooth SEBS layer as the cover on the top and a layer composed of hill‐like PMMA dispersed in the SEBS matrix at the bottom when the composition of the film was around 50:50 SEBS and PMMA. A series of blend films with different thicknesses were then prepared to investigate the interfacial structure, and the formation process of the interlocking layer, which could be elucidated by a schematic diagram, was discussed. The interlocking bilayer film with SEBS on the top possessed high thermal stability and the best surface roughness in comparison with other structures. It might find important technical applications in fields such as adhesion, lubrication, and protective coatings. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 532–543, 2007. 相似文献
13.
Zhijun Chen Jie Cai Leyang Zhang Yun Liu Xiqun Jiang Changzheng Yang 《Journal of Polymer Science.Polymer Physics》2005,43(11):1332-1343
Copolymers of styrene and 4‐vinylpyridine with a styrene fraction f varying from 1 to 0 were grafted onto a silicon substrate in the melt. The grafting reaction and the stability of the grafted chains were investigated by Fourier transform infrared and X‐ray photoelectron spectroscopy. The thickness and surface morphology of the grafted copolymer layers were characterized with ellipsometry and atomic force microscopy (AFM). The copolymer chains were successfully grafted to the surface of the silicon substrate by a reaction between the hydroxyl groups of the nitroxide moiety at the end of the copolymers and the silanol groups on the surface of the silicon wafer. A measurement of the thickness of the grafted copolymer layers showed that the ratio of grafted‐layer thickness to the unperturbed chain radius of gyration decreased with the increasing fraction of 4‐vinylpyridine in the copolymer; this indicated that the grafted layer was strongly attracted to the substrate. In addition, an accelerated grafting process was observed at grafting times ranging from 48 to 72 h for pure poly(4‐vinylpyridine) and copolymers with f values of 0.3 and 0.5. AFM observation revealed that the grafted layers densely and homogeneously covered the silicon substrate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1332‐1343, 2005 相似文献
14.
Bndicte Mailhot Pierre‐Olivier Bussire Agns Rivaton Sandrine Morlat‐Thrias Jean‐Luc Gardette 《Macromolecular rapid communications》2004,25(2):436-440
Summary: A method of depth profiling by AFM nanoindentations is developed for the characterisation of the heterogeneity of the mechanical properties of oxidised polymers. An increase or a decrease of the sample stiffness is measured close to the surface. A comparison with micro‐FTIR profiles and a knowledge of the photooxidation mechanism permit an interpretation of the chemical and physical changes and give new insights into the understanding of the ageing behaviour.
15.
Adis Khetubol Sven Van Snick Egle Stanislovaityte Antti Hassinen Eduardo Coutiño‐González Willem Vanderlinden Yuliar Firdaus Eduard Fron Maarten Vlasselaer Jurate Simokaitiene Steven De Feyter Zeger Hens Juozas V. Grazulevicius Wim Dehaen Mark Van der Auweraer 《Journal of Polymer Science.Polymer Physics》2014,52(7):539-551
Semiconductor quantum dots (QDs) can be used as alternative for transition metal complexes to harvest the nonemissive triplet excitons in organic light‐emitting diodes (OLEDs). In search for a QD‐based OLED material generating blue emission, poly(9‐vinylcarbazole) (PVK) and poly(9‐(2,3‐epoxypropyl) carbazole) (PEPK) are chosen as host for blue‐emitting CdSe/ZnS core/shell QDs. The QDs are encapsulated with 16‐(N‐carbazolyl) hexadecanoic acid (C16), a ligand terminated by a carbazole moiety. As alternative for PVK, PEPK, where the lower molecular weight and less extensive excimer formation could promise a better film formation and more extensive exciton hopping, is explored. The efficiencies of singlet ( ) and triplet ( ) energy transfer to the C16 capped QDs are estimated by combining stationary photoluminescence spectra and fluorescence decays of pristine polymer films with those of polymer films doped with the QDs. At a loading of 30 wt % of the QDs, increases from 12 ± 1% in PVK to 41 ± 2% in PEPK while increases from 37 ± 22% in PVK to 72 ± 48% in PEPK. The investigation of the film morphology by atomic force microscopy confirms that the main factor limiting the triplet transfer efficiency in the PVK matrix is the clustering of the C16 capped QDs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 539–551 相似文献
16.
Stimuli‐Responsive Hybrid Coatings of Polyelectrolyte Multilayers and Nano‐Patterned Polymer Brushes
Sung Yun Yang Dul‐Yi Kim Sang‐Mi Jeong Ji‐Woong Park 《Macromolecular rapid communications》2008,29(9):729-736
A new type of polymeric hybrid coating is created by layer‐by‐layer deposition of polyelectrolyte multilayers (PEM) onto nano‐patterned polymer brushes (NPB). The PEM is a hydrogen‐bonded multilayer consisting of poly(acrylic acid) and poly(acrylamide) and the NPB is derived from a surface reactive rod‐coil block copolymer, polystyrene‐block‐poly[3‐(triethoxysilyl)propylisocyanate]. The thickness of the PEM coating is optimized with respect to the height of the NPB mounds, to yield PEM/NPB hybrid coatings with unique nano‐embossed or nano‐porous structures that can be interchangeable by heating and moisture annealing. The hybrid coating is patternable by the micro‐contact printing method. The results demonstrate that the combination of surface‐bound, hydrophobic NPB layer with hydrophilic PEM films at the nanoscopic level offers a new organic hybrid coating with novel surface properties.
17.
《Surface and interface analysis : SIA》2003,35(4):410-412
Atomic force microscopy (AFM) has been applied to investigate the morphological and topographical surface modifications induced by radiofrequency cold plasma processing of poly(ethyleneterephthalate) textiles. Surface effects are analysed in low‐pressure air plasma for different plasma exposure times. The results show a progressive degradation of the surface with increasing roughness. The analysis suggests that modification of the surface during textile treatment may be ascribed to a plasma‐induced physical process. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
18.
I. Garcia N. E. Zafeiropoulos A. Janke A. Tercjak A. Eceiza M. Stamm I. Mondragon 《Journal of polymer science. Part A, Polymer chemistry》2007,45(5):925-932
A key problem with nanomaterials is the difficulty of controlling the dispersion of nanoparticles inside an organic medium. To overcome this problem, functionalization of the nanoparticle surface is required. Poly(methyl methacrylate) (PMMA) brushes were grown on the surface of iron oxide magnetic nanoparticles with atom transfer radical polymerization and a grafting‐from approach. Modified magnetic nanoparticles with a graft density of 0.1 PMMA chains/nm2 were obtained. Cu(II), used as a deactivating complex, allowed good control of the polymerization along with a narrow polydispersity of the polymer chains. The functionalized magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, gel permeation chromatography, and atomic force microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 925–932, 2007 相似文献
19.
基于原子力显微镜的高分子单分子力学研究 总被引:1,自引:0,他引:1
原子力显微镜(AFM)从根本上改变了人们对单个原子和分子的作用和认识方式。单分子力谱是基于原子力显微镜力的测量方法。概速了近年来利用基于原子力显微镜的单分子力谱研究单个高分子分子内及分子闻作用力的进展。 相似文献
20.
I. Garcia A. Tercjak N. E. Zafeiropoulos M. Stamm I. Mondragon 《Journal of polymer science. Part A, Polymer chemistry》2007,45(20):4744-4750
The functionalization of nanoparticle surfaces is required to improve the dispersion of an inorganic material inside an organic matrix. In this work, polystyrene (PS) brushes were grown on the surface of iron oxide magnetic nanoparticles with atom transfer radical polymerization and a grafting‐from approach. After polymerization, the magnetic nanoparticles had a graft density of 0.9 PS chains/nm2. A sacrificial initiator was used to obtain a satisfactory result for the control of the polymerization, as its addition had to generate a sufficient concentration of persistent radicals (deactivator). A variety of techniques, such as Fourier transform infrared spectroscopy, thermogravimetric analysis, gel permeation chromatography, water contact‐angle measurements, and atomic force microscopy, were used to characterize the nanoparticles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4744–4750, 2007 相似文献