首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of 4‐amino‐5,5‐dimethyl‐5H‐1,2‐oxathiole 2,2‐dioxide ( 1 ) with 2‐(arylidene)malononitriles 2 in ethanol, at reflux, using piperidine as catalyst, afforded 5‐amino‐3,3‐dimethyl‐7‐aryl‐3H‐[1,2]oxathiolo[4,3‐b]pyridine‐6‐carbonitrile 1,1‐dioxides ( 3 ) in moderate chemical yields.  相似文献   

2.
Podand‐type ligands are an interesting class of acyclic ligands which can form host–guest complexes with many transition metals and can undergo conformational changes. Organic phosphates are components of many biological molecules. A new route for the synthesis of phosphate esters with a retained six‐membered ring has been used to prepare 2,2′‐[benzene‐1,2‐diylbis(oxy)]bis(5,5‐dimethyl‐1,3,2‐dioxaphosphinane) 2,2′‐dioxide, C6H4{O[cyclo‐P(O)OCH2CMe2CH2O]}2 or C16H24O8P2, (1), 2‐[(2′‐hydroxybiphenyl‐2‐yl)oxy]‐5,5‐dimethyl‐1,3,2‐dioxaphosphinane 2‐oxide, [cyclo‐P(O)OCH2CMe2CH2O](2,2′‐OC6H4–C6H4OH), (2), and oxybis(5,5‐dimethyl‐1,3,2‐dioxaphosphinane) 2,2′‐dioxide, O[cyclo‐P(O)OCH2CMe2CH2O]2, (3). Compound (1) is novel, whereas the results for compounds (2) and (3) have been reported previously, but we record here our results for compound (3), which we find are more precise and accurate than those currently reported in the literature. In (1), two cyclo‐P(O)OCH2CMe2CH2O groups are linked through a catechol group. The conformations about the two catechol O atoms are quite different, viz. one C—C—O—P torsion angle is −169.11 (11)° and indicates a trans arrangement, whereas the other C—C—O—P torsion angle is 92.48 (16)°, showing a gauche conformation. Both six‐membered POCCCO rings have good chair‐shape conformations. In both the trans and gauche conformations, the catechol O atoms are in the axial sites and the short P=O bonds are equatorially bound.  相似文献   

3.
The principal direction of conventional photolysis of the regioisomeric 2,2‐dimethyl‐5,5‐diphenyl‐ and 5,5‐dimethyl‐2,2‐diphenyl‐substituted 4‐diazodihydrofuran‐3(2H)‐ones 1a and 1b , respectively, is the Wolff rearrangement, while other photochemical processes, which are giving rise to the formation of C? H‐insertion, 1,2‐alkyl‐ or ‐aryl‐shifts, as well as H‐atom‐abstraction products occur to a much lower degree (Schemes 2 and 3). The ratio of similar reaction products from both regioisomers 1a and 1b is essentially independent of their structure, and a substantial effect of the relative position of the Ph and diazo group to each other on the yield of C? H‐insertion products does not occur. Based on stereochemical considerations, the Wolff rearrangement of diazodihydrofuran‐3(2H)‐ones apparently proceeds in a concerted manner, whereas the appearance in the reaction mixture of 1,2‐shift and H‐atom‐abstraction products points to the parallel generation during photolysis of singlet and triplet carbenes (Schemes 4 and 5).  相似文献   

4.
The reaction of 3,4‐di‐tert‐butyl‐thio‐phene 1‐oxide ( 8 ) with tetrachlorocyclopropene provided 6,7‐di‐tert‐butyl‐2,3,4,4‐tetrachloro‐8‐thia‐bicylo[3.2.1]octa‐2,6‐diene 8‐oxide ( 10 ), which was oxidized to the corresponding 8,8‐dioxide 16 by m‐chloroperbenzoic acid. The thermolysis of 16 in refluxing chlorobenzene, xylene, or octane gave 5‐tert‐ butyl‐1,2‐dichloro‐3‐[(1,1‐dich‐loro‐2,2‐dimethyl)‐pro‐ pyl]‐benzene ( 18 ) with extrusion of SO2 and 2‐tert‐butyl‐4,5,6‐trichloro‐9,9‐dimethylbicyclo[5.2.0]nona‐1,3,5‐triene ( 19 ) with extrusion of SO2 and HCl in 73–78% combined yields. On the other hand, the thermolysis of 16 in the presence of triethylamine gave 19 as the sole product in 98% yield. A mechanism that involves the initial formation of 4,5‐di‐tert‐butyl‐1,2,7,7‐tetrachlorocycloheptatriene ( 17 ) is proposed to ex‐ plain the observed products. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:132–222, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20079  相似文献   

5.
A new synthesis to obtain eleven novel derivatives of 11‐[(om‐ and p‐substituted)‐phenyl]‐8‐chloro‐3,3‐dimethyl‐2,3,4,5,10,11‐hexahydro‐1H‐dibenzo[b,e][1,4]diazepin‐1‐ones with possible pharmacological activity in the central nervous system in two efficient steps has been developed. The final products were obtained by condensation and cyclization between 3‐[4‐chloro‐1,2‐phenylenediamine]‐5,5‐dimethyl‐2‐cyclohexenone with (om‐ and p‐substituted)benzaldehyde. The structure of all products was corroborated by ir, 1H‐nmr, 13C‐nmr and high resolution in ms.  相似文献   

6.
The X‐ray structures of dibenzo[ce]‐1,2‐dithiine, dibenzo[ce]‐1,2‐dithiine‐5,5‐dioxide, diben‐ zo[ce]‐1,2‐dithiine‐5,5,6‐trioxide, and dibenzo[ce]‐1, 2‐dithiine‐5,5,6,6‐tetraoxide are reported and compared with the related “constrained'' naphthalene deri‐ vatives. The S‐S distances vary upon oxidation of the S centers in the order S‐S < SO‐S > SO2‐S < SO2‐SO > SO2‐SO2 i.e. the most oxidized sulfur atoms do not lead to the longest bond lengths. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:346–351, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20101  相似文献   

7.
The structures of N‐(2‐chlorophenyl)‐4‐hydroxy‐2‐methyl‐2H‐1,2‐benzothiazine‐3‐carboxamide 1,1‐dioxide and N‐(4‐chlorophenyl)‐4‐hydroxy‐2‐methyl‐2H‐1,2‐benzothiazine‐3‐carboxamide 1,1‐dioxide, both C16H13ClN2O4S, are stabilized by extensive intramolecular hydrogen bonds. The 4‐chloro derivative forms dimeric pairs of molecules lying about inversion centres as a result of intermolecular N—H...O hydrogen bonds, forming 14‐membered rings representing an R22(14) motif; the 2‐chloro derivative is devoid of any such intermolecular hydrogen bonds. The heterocyclic thiazine rings in both structures adopt half‐chair conformations.  相似文献   

8.
The 5,5‐dimethylpyrazolidin‐3‐one ( 4 ), prepared from ethyl 3‐methylbut‐2‐enoate ( 3 ) and hydrazine hydrate, was treated with various substituted benzaldehydes 5a – i to give the corresponding (1Z)‐1‐(arylmethylidene)‐5,5‐dimethyl‐3‐oxopyrazolidin‐1‐ium‐2‐ide azomethine imines 6a – i . The 1,3‐dipolar cycloaddition reactions of azomethine imines 6a – h with dimethyl acetylenedicarboxylate (=dimethyl but‐2‐ynedioate; 7 ) afforded the corresponding dimethyl pyrazolo[1,2‐a]pyrazoledicarboxylates 8a – h , while by cycloaddition of 6 with methyl propiolate (=methyl prop‐2‐ynoate; 9 ), regioisomeric methyl pyrazolo[1,2‐a]pyrazolemonocarboxylates 10 and 11 were obtained. The regioselectivity of cycloadditions of azomethine imines 6a – i with methyl propiolate ( 9 ) was influenced by the substituents on the aryl residue. Thus, azomethine imines 6a – e derived from benzaldehydes 5a – e with a single substituent or without a substituent at the ortho‐positions in the aryl residue, led to mixtures of regioisomers 10a – e and 11a – e . Azomethine imines 6f – i derived from 2,6‐disubstituted benzaldehydes 5f – i gave single regioisomers 10f – i .  相似文献   

9.
When 2,3‐dichloro‐1,4‐naphthoquinone (DCHNQ) ( 1 ) is allowed to react with 1‐phenylbiguanide (PBG) ( 2 ), 4‐chloro‐2,5‐dihydro‐2,5‐dioxonaphtho[1,2‐d]imidazole‐3‐carboxylic acid phenyl amide ( 4 ), 6‐chloro‐8‐phenylamino‐9H‐7,9,11‐triaza‐cyclohepta[a]naphthalene‐5,10‐dione ( 5 ) and 4‐dimethyl‐amino‐5,10‐dioxo‐2‐phenylimino‐5,10‐dihydro‐2H‐benzo[g]quinazoline‐1‐carboxylic acid amide ( 6 ) were obtained. While on reacting 1 with 2‐guanidinebenzimidazole (GBI) ( 3 ) the products are 3‐(1H‐benzoimidazol‐2‐yl)‐4‐chloro‐3H‐naphtho[1,2‐d]imidazole‐2,5‐dione ( 7 ) and 3‐[3‐(1H‐benzoimidazol‐2‐yl)‐ureido]‐1,4‐dioxo‐1,4‐dihydronaphthalene‐2‐carboxylic acid dimethylamide ( 8 ).  相似文献   

10.
A stereospecific synthesis of (2S)3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol from D ‐mannitol has been developed. The reaction of 2,3‐O‐isopropylidene‐D ‐glyceraldehyde with 2,4,5‐trifluorophenylmagnesium bromide gave [(4R)‐2,2‐dimethyl‐1,3‐dioxolan‐4‐yl](2,4,5‐trifluorophenyl)methanol in 65% yield as a mixture of diastereoisomers (1 : 1). The Ph3P catalyzed reaction of the latter with C2Cl6 followed by reduction with Pd/C‐catalyzed hydrogenation gave (2S)‐3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol with >99% ee and 65% yield.  相似文献   

11.
Synthesis of several 5,5‐dimethyl‐2‐oxido‐[1,3,2]‐dioxaphosphorinane‐2‐yl‐amino carboxylates ( 4a–j ) was accomplished through a two‐step process. This involves prior preparation of the intermediate monochloride ( 2 ), 2‐chloro‐5,5‐dimethyl [1,3,2]dioxaphosphorinane‐2‐oxide and its subsequent reaction with various amino acid esters ( 3a–j ) in dry tetrahydrofuran in the presence of triethyl amine at room temperature. They were characterized by elemental analysis, IR, 1H, 13C, 31P NMR, and mass spectral data. Their antifungal and antibacterial activity is also evaluated. Majority of these compounds exhibited moderate antimicrobial activity in the assay. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:256–260, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20426  相似文献   

12.
The radical copolymerization of vinylidene fluoride (VDF) with 4‐bromo‐1,1,2‐trifluorobut‐1‐ene (C4Br) was examined. This bromofluorinated alkene was synthesized in three steps, which started with the addition of bromine to chlorotrifluoroethylene. In contrast to the ethylenation of 1,1‐difluoro‐1,2‐dibromochlorethane, which failed, that of 2‐chloro‐1,1,2‐trifluoro‐1,2‐dibromoethane was optimized and led to 2‐chloro‐1,1,2‐trifluoro‐1,4‐dibromobutane. The kinetics of the copolymerization of VDF with this brominated monomer initiated by t‐butyl peroxypivalate led to an assessment of the reactivity ratios, rVDF = 0.96 ± 0.67 and rC4Br = 0.09 ± 0.63, at 50 °C. The suspension copolymerization was also carried out, and the chemical modifications of the resulting bromo‐containing poly(vinylidene fluoride)s were attempted and consisted mainly of elimination or nucleophilic substitution of the bromine. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 917–935, 2005  相似文献   

13.
Hydromagnesiation of alkynylsilanes 1 in diethyl ether gave (Z)‐α‐silylvinyl Grignard reagents 2 , which reacted with arylsulfenyl chlorides 3 to afford stereoselectively (E)‐α‐silylvinyl sulfides 4 in good yields. (E)‐α‐Silylvinyl sulfides 4 could undergo the cross‐coupling reactions with Grignard reagents in the presence of NiCl2(PPh3)2 to give stereoselectively (Z)‐1,2‐disubstituted vinylsilanes 5 . © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:644–647, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20165  相似文献   

14.
The synthesis of derivatives of 2,3‐dihydroimidazo[1,5,4‐ef][1,2,5]benzothiadiazepin‐6(4H,7H)‐thione 1,1‐dioxide is reported starting from N‐substituted ethyl 2‐(5‐chloro‐2‐nitrobenzenesulfonamido)‐2‐alkyl‐acetates. Fundamental steps of the synthetic pathway were: i) intramolecular cyclization of N‐substituted 2‐(2‐amino‐5‐chlorobenzenesulfonamido)‐2‐alkylacetic acids in the presence of N‐(3‐dimethyl‐aminopropyl)‐N′‐ethyl carbodiimide hydrochloride‐N,N‐dimethylaminopyridine complex; ii) building of imidazole ring from 2‐alkyl‐8‐chloro‐2,3‐dihydro‐3‐methyl‐1,2,5‐benzothiadiazepin‐4(5H)‐one 1,1‐dioxide to achieve 2‐alkyl‐9‐chloro‐2,3‐dihydro‐3‐methylimidazo[1,5,4‐ef][1,2,5]benzothiadiazepin‐6(4H,7H)‐one 1,1‐dioxide; iii) preparation of thiocarbonyl derivative by treatment with Lawesson's reagent. Introduction of a 3‐methyl‐2‐butenyl chain at position 2 of above imidazobenzothiadiazepinone required protection at the 7 position with thermally removable tert‐butoxycarbonyl moiety, due to the fact that alkylation of unprotected structure proved to be regioselective for the 7 position.  相似文献   

15.
Large Stokes‐shift coumarin dyes with an O‐phosphorylated 4‐(hydroxymethyl)‐2,2‐dimethyl‐1,2,3,4‐tetrahydroquinoline fragment emitting in the blue, green, and red regions of the visible spectrum were synthesized. For this purpose, N‐substituted and O‐protected 1,2‐dihydro‐7‐hydroxy‐2,2,4‐trimethylquinoline was oxidized with SeO2 to the corresponding α,β‐unsaturated aldehyde and then reduced with NaBH4 in a “one‐pot” fashion to yield N‐substituted and 7‐O‐protected 4‐(hydroxymethyl)‐7‐hydroxy‐2,2‐dimethyl‐1,2,3,4‐tetrahydroquinoline as a common precursor to all the coumarin dyes reported here. The photophysical properties of the new dyes (“reduced coumarins”) and 1,2‐dihydroquinoline analogues (formal precursors) with a trisubstituted C=C bond were compared. The “reduced coumarins” were found to be more photoresistant and brighter than their 1,2‐dihydroquinoline counterparts. Free carboxylate analogues, as well as their antibody conjugates (obtained from N‐hydroxysuccinimidyl esters) were also prepared. All studied conjugates with secondary antibodies afforded high specificity and were suitable for fluorescence microscopy. The red‐emitting coumarin dye bearing a betaine fragment at the C‐3‐position showed excellent performance in stimulation emission depletion (STED) microscopy.  相似文献   

16.
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings.  相似文献   

17.
2a,4‐Disubstituted 5‐benzoyl‐2‐chloro/2,2‐dichloro‐2a,3,4,5‐tetrahydro‐azeto [1,2‐a] [1,5]benzodiazepin‐1 (2H)‐ones ( 3a–h ) were synthesized by cycloaddition reactions of 2,4‐disubstituted 1‐benzoyl‐2,3‐dihydr o‐1H‐1,5‐benzodiazepines ( 2a–h ) and ketenes, generated from chloroacetyl chloride or dichloroacetyl chloride in the presence of triethylamine, in anhydrous benzene. In some cases, ring contraction of benzodiazepines has also been observed. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:636–640, 2001  相似文献   

18.
2‐Ammonio‐5‐chloro‐4‐methylbenzenesulfonate, C7H8ClNO3S, (Ia), is an intermediate in the synthesis of lake red azo pigments. The present structure determination from single‐crystal data confirms the results of a previous powder diffraction determination [Bekö, Thoms, Brüning, Alig, van de Streek, Lakatos, Glaubitz & Schmidt (2010). Z. Kristallogr. 225 , 382–387]. The zwitterionic tautomeric form is confirmed. During a polymorph screening, two additional pseudopolymorphs were obtained, viz. 2‐ammonio‐5‐chloro‐4‐methylbenzenesulfonate 1‐methyl‐2‐pyrrolidone monosolvate, C7H8ClNO3S·C5H9NO, (Ib), and 2‐ammonio‐5‐chloro‐4‐methylbenzenesulfonate dimethyl sulfoxide monosolvate, C7H8ClNO3S·C2H6OS, (Ic). The molecules of (Ib) have crystallographic m symmetry. The 1‐methyl‐2‐pyrrolidone solvent molecule has an envelope conformation and is disordered around the mirror plane. The structure shows hydrogen‐bonded ladders of molecules [graph‐set notation C22(6)R22(12)] in the [010] direction. The benzene groups of adjacent ladders are also stacked in this direction. A different type of hydrogen‐bonded ladder [graph‐set notation C(6)R22(4)R44(12)] occurs in (Ic). In (Ia), (Ib) and (Ic), the molecules correspond to the zwitterionic tautomer. The structure of the cocrystal of 4‐aminobenzenesulfonic acid with 1,4‐bis(4,5‐dihydroimidazol‐2‐yl)benzene [Shang, Ren, Wang, Lu & Yang (2009). Acta Cryst. E 65 , o2221–o2222] is corrected; it actually contains 4‐aminobenzenesulfonate anions and 2,2′‐(1,4‐phenylene)di(dihydroimidazolium) dications, i.e. 2,2′‐(1,4‐phenylene)di(4,5‐dihydroimidazolium) bis(4‐aminobenzenesulfonate) dihydrate, C12H16N42+·2C6H6NO3S·2H2O. Hence, all known structures of aminobenzenesulfonic acid complexes contain ionic or zwitterionic molecules; there is no known structure with a neutral aminobenzenesulfonic acid molecule.  相似文献   

19.
The reaction of the quinoxaline N‐oxide 1 with thiophene‐2‐carbaldehyde gave 6‐chloro‐2‐[1‐methyl‐2‐(2‐thienylmethylene)hydrazino]quinoxaline 4‐oxide 5 , whose reaction with 2‐chloroacrylonitrile afforded 8‐chloro‐2,3‐dihydro‐4‐hydroxy‐1‐methyl‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]quinoxaline‐5‐carbonitrile 6 . The reaction of compound 6 with various alcohols in the presence of a base effected alcoholysis to provide the 5‐alkoxy‐8‐chloro‐2,3,4,6‐tetrahydro‐1‐methyl‐4‐oxo‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]‐quinoxalines 7a‐d . The reaction of compounds 7a and 7b with diethyl azodicarboxylate effected dehydrogenation to give the 5‐alkoxy‐8‐chloro‐4,6‐dihydro‐1‐methyl‐4‐oxo‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]‐quinoxalines 8a and 8b , respectively. Compounds 8a and 8b were found to show good algicidal activities against Selenastrum capricornutum and Nitzchia closterium.  相似文献   

20.
Four new lanthanide complexes [Ln(4‐EBA)3(5,5′‐DM‐2,2′‐bipy)]2·2C2H5OH (Ln = Ho ( 1 ), Tb ( 2 ), Er ( 3 )); [Ln(4‐EBA)3(4‐EBAH)(5,5′‐DM‐2,2′‐bipy)]2 (Ln = Eu( 4 ); 4‐EBA =4‐ethylbenzoate; 5,5′‐DM‐2,2′‐bipy =5,5′‐dimethy‐2,2′‐bipyridine; 4‐EBAH = 4‐ethylbenzoic acid) have been synthesized and characterized by elemental analysis and IR spectra. The single crystal results reveal that complexes 1 – 3 are isostructural. It is worth noting that the mole ratios of the carboxylate ligands and neutral ligands is 4:1 in complex 4 , which is different from the former and has been rarely reported. Nevertheless, all complexes are connected to form 1D chain by π ···π wake staking interactions. Additionally, the complexes 2 (Tb(III)) and 4 (Eu(III)) exhibit characteristic luminescent properties, indicating that ligands can be used as sensitizing chromophore in these systems. The thermal decomposition mechanism of the complexes has been investigated by TG/DSC–FTIR technology. Stacked plots of the FTIR spectra of the evolved gases show complexes broken down into H2O, CO2, and other gaseous molecules as well as the gaseous organic fragments. The studies on bacteriostatic activities of complexes show that four complexes have good bacteriostatic activities against Candida albicans but no bacteriostatic activity on Escherichia coli , and Staphylococcus aureus . Additionally, the complexes 1 to 3 have better bacteriostatic activities on Candida albicans than complex 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号