首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
The reaction of 2‐(benzothiazol‐2‐ylmethyl)‐1,3‐thiazol‐4(5H)‐one 1 with α,β‐cinnamonitrile derivatives 2a‐n have been reported.  相似文献   

2.
The resolution of η5(2‐formyl‐3,4‐dimethylphospholyl)(triphenylphosphine)‐manganesedicarbonyl 1 has been carried out by chromatography of the acetals derived from (S,S)‐1,2‐diphenylethane‐1,2‐diol. The enantiopure 2‐diphenylphosphinomethyl 4 and diphenylmethylimino 5 derivatives have been prepared from 1 . © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:458–460, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20130  相似文献   

3.
Ten compounds of new (Z)‐5‐((1H‐1,24‐triazol‐1‐yl)methyl)‐3‐arylideneindolin‐2‐ones ( 5a – j ) have been synthesized by the Knoevenagel condensation of 5‐((1H‐1,2,4‐triazol‐1‐ylmethyl)indolin‐2‐one ( 3 ) with 4‐substituted aromatic aldehydes ( 4a – j ).  相似文献   

4.
The reaction of the 4‐hydroxyquinoline‐3‐carboxylate 6 with pentaerythritol tribromide gave the 1,1′‐(2‐methylenepropane‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 11 , whose reaction with bromine afforded the 1,1′‐(2‐bromo‐2‐bromomethylpropane‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 12 . Compound 12 was transformed into the (Z)‐1,1′‐(2‐acetoxymethylpropene‐1,3‐diyl)di(4‐quinolone‐3‐carboxylate) 13 or (E)‐1,1′‐[2‐(imidazol‐1‐ylmethyl)propene‐1,3‐diyl]di(4‐quinolone‐3‐carboxylate) 14 . Hydrolysis of the dimer (Z)‐ 13 or (E)‐ 14 with potassium hydroxide provided the (E)‐1,1′‐(2‐hydroxymethylpropene‐1,3‐diyl)di(4‐quinolone‐3‐carboxylic acid) 15 or (Z)‐1,1′‐[2‐(imidazol‐1‐ylmethyl)propene‐1,3‐diyl]di(4‐quinolone‐3‐carboxylic acid) 16 , respectively. The nuclear Overhauser effect (NOE) spectral data supported that those hydrolysis resulted in the geometrical conversion of (Z)‐ 13 into (E)‐ 15 or (E)‐ 14 into (Z)‐ 16 .  相似文献   

5.
Three new one‐ (1D) and two‐dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O}n ( 1 ), catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH}n ( 2 ), and catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O}n ( 3 ), were obtained from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐3‐yl terminal groups and from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐4‐yl terminal groups. Compound 1 displays a 2D net‐like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three‐dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen‐bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter‐anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen‐bonding systems in the crystal structures.  相似文献   

6.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

7.
Two different one‐dimensional supramolecular chains with CoII cations have been synthesized based on the semi‐rigid ligand 2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline (L), obtained by condensation of 2‐(1H‐benzimidazol‐2‐yl)quinoline and 4‐(chloromethyl)pyridine hydrochloride. Starting from different CoII salts, two new compounds have been obtained, viz. catena‐poly[[[dinitratocobalt(II)]‐μ‐2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline] dichloromethane monosolvate acetonitrile monosolvate], {[Co(NO3)2(C22H16N4)]·CH2Cl2·CH3CN}n, (I) and catena‐poly[[[dichloridocobalt(II)]‐μ‐2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline] methanol disolvate], {[CoCl2(C22H16N4)]·2CH3OH}n, (II). In (I), the CoII centres lie in a distorted octahedral [CoN3O3] coordination environment. {Co(NO3)2L}n units form one‐dimensional helical chains, where the L ligand has different directions of twist. The helical chains stack together via interchain π–π interactions to form a two‐dimensional sheet, and another type of π–π interaction further connects neighbouring sheets into a three‐dimensional framework with hexagonal channels, in which the acetonitrile molecules and disordered dichloromethane molecules are located. In (II), the CoII centres lie in a distorted trigonal–bipyramidal [CoCl2N3] coordination environment. {CoCl2L}n units form one‐dimensional chains. The chains interact via C—H...π and C—H...Cl interactions. The result is that two‐dimensional sheets are generated, which are further linked into a three‐dimensional framework via interlayer C—H...Cl interactions. When viewed down the crystallographic b axis, the methanol solvent molecules are located in an orderly manner in wave‐like channels.  相似文献   

8.
Useful oxidation reaction of 2‐alkyl(aryl)‐3‐methylthiopyrano[4,3‐c]pyrazol‐4(2H)‐ones, leading to either the corresponding sulfoxides or sulfones, using hydrogen peroxide and acetic acid in 1,2‐dichloroethane, is described. Bioassay results showed that the products have some herbicidal activity. © 2005 Wiley Periodicals, Inc. 16:255–258, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20067  相似文献   

9.
Diastereomeric salts with optically pure (S)‐α‐methoxy‐α‐(trifluoromethyl)phenylacetic acid (MTPA) were used to discriminate the enantiomers of the chiral H3‐antagonist 2‐[3‐(1H‐imidazol‐4‐ylmethyl)piperidin‐1‐yl]‐1H‐benzimidazole. Chemical‐shift differences (Δδ) in NMR spectra strongly depend on solvent and stoichiometric ratio. The better observable differentiation occurred for the proton at the 2‐position of the imidazole ring. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Synthesis of some new oxadiazole derivatives starting from 1,2,3-benzo[d]triazole-1-acetic hydrazide (1) is described. The target compounds 2-(N-substituted-aminocarbonylmethylthio)-5-(1,2,3-benzo[d]triazol-1-ylmethyl)- 1,3,4-oxadiazole (4a—4i) and 2-[2-(N-substituted-aminocarbonyl)ethylthio]-5-(1,2,3-benzo[d]triazol-1-ylmethyl)- 1,3,4-oxadiazole (5a—5i) were obtained in good yields via cyclisation of 1 and subjected to antibacterial activity test against pathogenic bacteria. The halogen containing mono- and di-substituted derivatives showed excellent antibacterial activity compared to other analogues.  相似文献   

11.
A one‐dimensional AgI coordination complex, catena‐poly[[silver(I)‐μ‐{2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol‐κ2N2:N3}] perchlorate monohydrate], {[Ag(C19H15N3O)]ClO4·H2O}n, was synthesized by the reaction of 2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol (L) with silver perchlorate. In the complex, the L ligands are arranged alternately and link AgI cations through one benzimidazole N atom and the N atom of the pyridine ring, leading to an extended zigzag chain structure. In addition, the one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via O—H...O hydrogen‐bond interactions and π–π stacking interactions. The complex exhibits photoluminescence in acetonitrile solution, with an emission maximum at 390 nm, and investigation of the thermal stability reveals that the network structure is stable up to 650 K.  相似文献   

12.
o‐Formylphenylboronic acid reacts with morpholine to form 1,3‐dihydro‐1‐hydroxy‐3‐morpholin‐4‐yl‐2,1‐benzoxaborole. The typical hydrogen‐bonded dimer motif with a planar benzoxaborole fragment has been obtained in the solid state. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The 1‐hydrazinocarbonylmethyl‐4‐quinolone‐3‐carboxylate ( 10 ) was converted into the 1‐(4‐amino‐1,2,4‐triazol‐3‐ylmethyl)‐4‐quinolone‐3‐carboxylic acid ( 13 ), whose reaction with arylcarbaldehydes gave the 1‐(4‐arylmethyleneamino‐1,2,4‐triazol‐3‐ylmethyl)‐4‐quinolone‐3‐carboxylic acids ( 5a , 5b , 5c , 5d , 5e , 5f , 5g ). Compound 10 was also transformed into the 1‐(4‐amino‐1,2,4‐triazol‐3‐ylmethyl)‐4‐quinolone‐3‐carbohydrazide ( 15 ), whose reaction with phenyl isocyanate or phenyl isothiocyanate afforded the 4‐phenyl‐1‐(1‐triazolylmethyl‐4‐quinolon‐3‐ylcarbonyl)semicarbazide ( 6a ) or 4‐phenyl‐1‐(1‐triazolylmethyl‐4‐quinolon‐3‐ylcarbonyl)thiosemicarbazide ( 6b ), respectively. Compounds 6a , 6b showed the in vitro antimalarial activity to chloroquine‐resistant Plasmodium falciparum, wherein their IC50 was 3.89 and 3.91 μM, respectively.  相似文献   

14.
The 2′‐deoxy‐N6‐(naphthalen‐1‐ylmethyl)‐ ( 5a ) and N6‐(pyren‐1‐ylmethyl)adenosine ( 5b ) were synthesized in two steps from 2′‐deoxyadenosine and the adequate arenecarbaldehyde with 1H‐benzotriazole as a synthetic auxiliary (Scheme). When the N6‐(arylmethyl)‐2′‐deoxyadenosines were inserted into the junction region of a DNA three‐way junction, its thermal stability increased.  相似文献   

15.
The reaction of the hydrazide of pyridine‐4‐acetic acid with isothiocyanate gave thiosemicarbazide derivatives respectively. Further cyclization with 2% NaOH led to the formation of 4‐substituted 3‐(pyridin‐4‐ylmethyl)‐1,2,4‐triazoline‐5‐thione and 3‐(pyridin‐4‐ylmethyl)‐1,2,4‐triazoline‐5‐thione. The structures of all new products were confirmed by analytical and spectroscopic methods.  相似文献   

16.
The reaction of activated trihalome‐ thylsubstituted alkenes with salicylaldehydes in the presence of triethylamine gives 3‐substituted 2‐trifluo‐ romethylchroman‐4‐ols and 2‐trifluoro(trichloro)methyl‐2H‐chromenes in high yields. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:492–496, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20146  相似文献   

17.
The condensation of 3‐ferrocenyl‐prop‐2‐enal with primary amines leads to the formation of the corresponding imines in good yields. The crystal structures of imines derived from p‐dimethylamino‐aniline and furfurylamine are determined by the ability of the functional groups to act as hydrogen bond donor or acceptor sites. Although N, N‐dimethyl‐N′‐(3‐ferrocenyl‐allylidene)‐benzene‐1, 4‐diamine and furan‐2‐ylmethyl‐(3‐ferrocenyl‐allylidene)‐amine are achiral molecules they crystallize in the non‐centrosymmetric space groups P21 and Pca21, respectively. The molecular architecture of N, N‐dimethyl‐N′‐(3‐ferrocenyl‐allylidene)‐benzene‐1, 4‐diamine is realized by the incorporation of dichloromethane acting as hydrogen bond donor and acceptor with both hydrogen and both chlorine atoms. On the other hand, the molecules of furan‐2‐ylmethyl‐(3‐ferrocenyl‐allylidene)‐amine are linked by hydrogen bonds towards the centroid of one of the cyclopentadienyl ligands and towards the oxygen atom of the furan ring to produce infinite chains.  相似文献   

18.
2‐Amino‐3‐cyano‐4,5,6,7‐tetrahydrobenzo[b]thiophene 1a or 2‐amino‐3‐cyano‐4,7‐di‐ phenyl‐5‐methyl‐4H‐pyrano[2,3‐c]pyrazole 2a reacted with phenylisocyanate in dry pyridine to give 2‐(3‐phenylureido)‐3‐cyanobenzo[b]thiophene 1b or 2‐disubstituted amino‐3‐cyanopyranopyrazole 2b derivative. However, when 1a and 2a were refluxed with carbon disulfide in 10% ethanolic sodium hydroxide solution, they afforded the thieno[2,3‐d]pyrimidin‐2,4‐dithione derivative 5 in the former case, 2,4‐dicyano‐1,3‐bis(dithio carboxamino)cyclobuta‐1,3‐ diene 6 and pyrazolopyranopyrido[2,3‐d]pyrimidin‐ 2,4‐dithione derivative 7 in the latter one. Treatment of 2a with thiourea in refluxing ethanol in the presence of potassium carbonate gave 2,2′‐dithiobispyrimidine derivative 9 (major) in addition to pyranopyrazole derivative 10 and 2,2′‐dithiobis ethoxypyrimidine derivative 11 in minor amounts. The structures of all products were evidenced by microanalytical and spectral data. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:6–11, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20070  相似文献   

19.
A new complex [Pr(bib)2(NO3)3] ( 1 ) was synthesized by reaction of bidentate imidazole‐containing ligand 1‐bromo‐3,5‐bis(imidazol‐1‐ylmethyl)benzene (bib) with Pr(NO3)·6H2O and characterized by X‐ray crystallography. Complex 1 has a two‐dimensional herringbone‐like structure with the ligand bib serving as a bridging ligand using its two imidazolyl nitrogen atoms. Ligand bib adopts cis and trans two different conformations, and the Pr(III) atoms are bridged by bib in two different ways. Thermogravimetric analysis for complex 1 was carried out and the result shows that the complex is stable up to 180 °C. Variable‐temperature magnetic susceptibility of complex 1 was measured between 1.8 and 300 K and the result shows that the χMT value decreases continuously over the whole temperature range. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Chloroformylation of 5,5‐dimethyl‐1,2‐ oxathiolan‐4‐one 2,2‐dioxide 4 with Vilsmeier reagent (DMF/POCl3) led to the formation of cyclic β‐chloro‐vinylaldehyde (4‐chloro‐5,5‐dimethyl‐3‐formyl‐1,2‐oxathiolene 2,2‐dioxide 5 ). Compound 5 reacted with formamidine, o‐aminophenol, 1,2‐phenylenediamine, aminopyrazole, and aminotetrazole to give the corresponding heterocyclic compounds. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:200–204, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20094  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号