首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroinitiator‐amino terminated poly(ethylene glycol) (PEG) (NH2‐PEO‐NH2) was prepared by converting both terminal hydroxyl groups of PEG to more reactive primary amino groups. The synthetic route involved reactions of chloridize, phthalimide and finally hydrazinolysis. Furthermore, poly(γ‐benzyl‐L ‐glutamate)‐poly(ethylene oxide)‐poly(γ‐benzyl‐L ‐glutamate) (PBLG‐PEO‐PBLG) triblock copolymer was synthesized by polymerization of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (Bz‐L‐GluNCA) using NH2‐PEO‐NH2 as macroinitiator. The resultant NH2‐PEO‐NH2 and triblock copolymer were characterized by FT‐IR, 1H‐NMR and gel permeation chromatography (GPC) techniques. The results demonstrated that the degree of amination of the NH2‐PEO‐NH2 could be up to 1.95. The molecular weight of the PBLG‐PEO‐PBLG triblock copolymer could be adjusted easily by controlling the molar ratio of Bz‐L ‐Glu NCA to the macroinitiator NH2‐PEO‐NH2. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
We report the design and synthesis of new fully biodegradable thermoresponsive amphiphilic poly(γ‐benzyl L ‐glutamate)/poly(ethyl ethylene phosphate) (PBLG‐b‐PEEP) block copolymers by ring‐opening polymerization of N‐carboxy‐γ‐benzyl L ‐glutamate anhydride (BLG? NCA) with amine‐terminated poly(ethyl ethylene phosphate) (H2N? PEEP) as a macroinitiator. The fluorescence technique demonstrated that the block copolymers could form micelles composed of a hydrophobic core and a hydrophilic shell in aqueous solution. The morphology of the micelles as determined by transmission electron microscopy (TEM) was spherical. The size and critical micelle concentration (CMC) values of the micelles showed a decreasing trend as the PBLG segment increased. However, UV/Vis measurements showed that these block copolymers exhibited a reproducible temperature‐responsive behavior with a lower critical solution temperature (LCST) that could be tuned by the block composition and the concentration.  相似文献   

3.
Synthesis and self‐assembly behavior of a novel amphiphilic brush‐coil block copolymer bearing hydrophilic poly(ethylene glycol) segment and hydrophobic polypeptide brush segment were presented in this work. The poly(γ‐benzyl‐L ‐glutamate) (PBLG) brush is synthesized through “grafting from” strategy by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride (BLG‐NCA) initiated by the flanking terminal primary amino group of macroinitiator. The copolymers were characterized by 1H NMR, gel permeation chromatography, Fourier transform infrared, circular dichroism spectrum, and differential scanning calorimetry. The self‐assembly behavior of the brush‐coil block copolymers in aqueous solution was investigated by means of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, and laser light scattering. Spherical micelles were observed when the length of PBLG brush is shorter. The aggregate morphology transforms to spindle‐like micelles and then to rod‐like micelles, as the length of polypeptide brush increases. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5967–5978, 2009  相似文献   

4.
Summary: A poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymer was synthesized through the polymerization of β‐benzyl‐L ‐aspartate‐N‐carboxyanhydride [Asp(OBzl)‐NCA] with amino‐terminating polylactide (NH2‐PLA) as a macroinitiator. The chain length of the PAsp segment could be easily controlled by changing the monomer/initiator ratio. Dynamic light scattering measurements of PAsp‐block‐PLA aqueous solutions revealed the formation of polymeric micelles. Changes in the micelles as a function of pH were investigated.

The structure and formation of micelles of the poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymers synthesized here.  相似文献   


5.
The preparation of star‐shaped poly(γ‐benzyl‐L ‐glutamate)s by the ring‐opening polymerization of N‐carboxy anhydride γ‐benzyl‐L ‐glutamate (BLG‐NCA) with hexakis(4‐aminomethylphenoxy)‐ ( 4 ) and hexakis(4‐aminophenoxy)cyclotriphosphazenes ( 6 ), and the conformation of resulting polymers has been studied. The six amino groups in 4 can initiate the polymerization of BLG‐NCA to give star‐shaped polyglutamates ( 7 ) with narrow molecular weight distributions (M w/M n = 1.10–1.33). For the polymerization of BLG‐NCA with 6 , however, a high ratio of [BLG‐MCA]/[ 6 ] was required to obtain star‐shaped polyglutamates ( 8 ). The conformation of 7 changed from a β‐sheet form to a right‐handed α‐helix form, depending on the degree of polymerization per chain (DP n/6). The helix content of hexa‐armed poly (γ‐benzyl‐L ‐glutamate‐co‐L ‐glutamic acid)s ( 9 ), prepared by partial hydrolysis of 7 , increased significantly compared with that of the corresponding linear analogue ( 10 ). As increasing of helix content of 9 , the fluorescence spectra of 8‐anilino‐1‐naphthalenesulfonic acid (ANS), a fluorescence probe, shifted to a short wavelength accompanied by the enhancement of intensity, suggesting that star‐shaped polymers are liable to form hydrophobic domains. From these results and the structural feature of the cyclotriphosphazene core, the formation of a 3α‐helix bundle structure of polyglutamates on both sides of the phosphazene ring has been suggested.

  相似文献   


6.
The synthesis of polypeptide‐containing block copolymers combining N‐carboxyanhydride (NCA) ring‐opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was used. Well‐defined polypeptide macroinitiators were obtained from γ‐benzyl‐L ‐glutamate NCA, O‐benzyl‐serine NCA, and N‐benzyloxy‐L ‐lysine. Subsequent ATRP macroinitiation from the polypeptides resulted in higher than expected molecular weights. Analysis of the reaction products and model reactions confirmed that this is due to the high frequency of termination reactions by disproportionation in the initial phase of the ATRP, which is inherent in the amide initiator structure. In some cases selective precipitation could be applied to remove unreacted macroinitiator to yield well‐defined block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

7.
Summary: A novel ABC triblock copolymer with a rigid‐rod block was synthesized by atom transfer radical polymerization (ATRP). First, a poly(ethylene oxide) (PEO)‐Br macroinitiator was synthesized by esterification of PEO with 2‐bromoisobutyryl bromide, which was subsequently used in the preparation of a poly(ethylene oxide)‐block‐poly(methyl methacrylate) (PEO‐b‐PMMA) diblock copolymer by ATRP. A poly(ethylene oxide)‐block‐poly(methyl methacrylate)‐block‐poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (PEO‐b‐PMMA‐b‐PMPCS) triblock copolymer was then synthesized by ATRP using PEO‐b‐PMMA as a macroinitiator.

ABC triblock copolymer with a rigid‐rod block.  相似文献   


8.
Amphiphilic poly(ethylene oxide)‐block‐poly(isoprene) (PEO‐b‐PI) diblock copolymers were prepared by nitroxide‐mediated polymerization of isoprene from alkoxyamine‐terminal poly(ethylene oxide) (PEO). PEO monomethyl ether (Mn ≈ 5200 g/mol) was functionalized by esterification with 2‐bromopropionyl bromide with subsequent copper‐mediated replacement of the terminal bromine with 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide. The resulting PEO‐alkoxyamine macroinitiator was used to initiate polymerization of isoprene in bulk and in solution at 125 °C to yield PEO‐b‐PI block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Polymerizations were first order in isoprene through 35% conversion. Micellar aggregates of PEO‐b‐PI in aqueous solution were crosslinked by treatment with a water‐soluble redox initiating system, and persistent micellar structures were observed in the dry state by AFM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2977–2984, 2005  相似文献   

9.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

10.
This paper presents a new approach to improving the physical stability of biodegradable poly‐(ethylene glycol)‐block‐poly[(DL ‐lactic acid)‐co‐(glycolic acid)] (PEG‐PLGA) micelles. A hydroxyl‐terminated PEG monomethacrylate (PEGmer) macroinitiator was used to prepare a methacrylate‐end‐capped PEG‐PLGA diblock copolymer by the ring‐opening polymerization of D ,L ‐lactide and glycolide. The surface‐exposed methacrylate groups in the shell layer of the micelles can be polymerized with N‐vinyl‐2‐pyrrolidone. The resulting micelles show substantially enhanced stability.  相似文献   

11.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


12.
A five‐arm star‐shaped poly(ethylene oxide) (PEO) with terminal bromide groups was used as a macroinitiator for the atom transfer radical polymerization of tert‐butyl acrylate (tBA), resulting in five‐arm star‐shaped poly(ethylene oxide)‐block‐poly(tert‐butyl acrylate) block copolymers. The polymerization proceeded in a controlled way using a copper(I)bromide/pentamethyl diethylenetriamine catalytic system in acetonitrile as solvent. The hydrolysis of the tBA blocks of the amphiphilic star‐shaped PEO‐b‐PtBA block copolymer resulted in dihydrophilic star structures. The encapsulation of the star‐block copolymers and their release properties in acid environment have been followed by UV‐spectroscopy and color changes, using the dye methyl orange as a hydrophilic guest molecule. Characterization of the structures has been done by 1H NMR, size exclusion chromatography, MALDI‐TOF, and differential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 650–660, 2008  相似文献   

13.
A new procedure for the preparation of poly(α‐alkyl β,L ‐aspartate)s based on the transesterification of polyα‐benzyl β,L ‐aspartate) with alcohols in the presence of titanium tetrabutoxide is described. The reaction proceeded to almost total conversion without substantial racemization or imidation. Thermal properties of the resulting polymers were comparable to those of their homologues obtained by anionic ring‐opening polymerization of β‐lactams and their thermal stability is even higher.  相似文献   

14.
Poly(benzyl‐L ‐glutamate) (PBLG) macromonomers were synthesized by N‐carboxyanhydride (NCA) polymerization initiated with 4‐vinyl benzylamine. MALDI‐ToF analysis confirmed the presence of styrenic end‐groups in the PBLG. Free‐radical and RAFT polymerization of the macromonomer in the presence of divinyl benzene produced star polymers of various molecular weights, polydispersity, and yield depending on the reaction conditions applied. The highest molecular weight (Mw) of 10,170,000 g/mol was obtained in a free‐radical multibatch approach. It was shown that the PBLG star polymers can be deprotected to obtain poly(glutamic acid) star polymers, which form water soluble pH responsive nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
In this work, rare earth tris(borohydride) complexes, Ln(BH4)3(THF)3 (Ln = Sc, Y, La, and Dy), have been used to catalyze the ring‐opening polymerization of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (BLG NCA). All the catalysts show high activities and the resulting poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) are recovered with high yields (≥90%). The molecular weights (MWs) of PBLG can be controlled by the molar ratios of monomer to catalyst, and the MW distributions (MWDs) are relatively narrow (as low as 1.16) depending on the rare earth metals and reaction temperatures. Block copolypeptides can be easily synthesized by the sequential addition of two monomers. The obtained P(γ‐benzyl‐L ‐glutamate‐b‐ε‐carbobenzoxy‐L ‐lysine) [P(BLG‐b‐BLL)] and P(γ‐benzyl‐L ‐glutamate‐b‐alanine) [P(BLG‐b‐ALA)] have been well characterized by NMR, gel permeation chromatography, and differential scanning calorimetry measurements. A random copolymer P(BLG‐co‐BLL) with a narrow MWD of 1.07 has also been synthesized. The polymerization mechanisms have been investigated in detail. The results show that both nucleophilic attack at the 5‐CO of NCA and deprotonation of 3‐NH of NCA in the initiation process take place simultaneously, resulting in two active centers, that is, an yttrium ALA carbamate derivative [H2BOCH2(CH)NHC(O)OLn? ] and a N‐yttriumlated ALA NCA. Propagation then proceeds on these centers via both normal monomer insertion and polycondensation. After termination, two kinds of telechelic polypeptide chains, that is, α‐hydroxyl‐ω‐aminotelechelic chains and α‐carboxylic‐ω‐aminotelechelic ones, are formed as characterized by MALDI‐TOF MS, 1H NMR, 13C NMR, 1H–1H COSY, and 1H–13C HMQC measurements. By decreasing the reaction temperature, the normal monomer insertion pathway can be exclusively selected, forming an unprecedented α‐hydroxyl‐ω‐aminotelechelic polypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
A series of ABC triblock copolymers, that is, polyisoprene‐block‐polystyrene‐block‐poly(ethylene oxide) (PI‐PS‐PEO), PI‐block‐poly(tert‐butyl acrylate)‐block‐PEO (PI‐PtBA‐PEO), and PI‐block‐poly(acrylic acide)‐block‐PEO (PI‐PAA‐PEO) were obtained by combination of anionic technique, atom transfer radical polymerization (ATRP), and single electron transfer nitroxide coupling (SETNRC) reaction. Anionic polymerization of isoprene followed by end capping with ethylene oxide yielded hydroxyl‐terminated PI. After esterification, PI with Br end group was used as a macroinitiator to initiate the polymerization of styrene and tBA by ATRP that was then trapped by 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group in PEO by SETNRC reaction rapidly with high efficiency in tetrahydrofuran at room temperature. The effect of reaction time and polymer chain length on SETNRC reaction was discussed in detail. In the presence of Cu0/tris[2‐(dimethylamino)ethyl]amine, SETNRC between PI‐PS‐Br and PEO‐TEMPO was carried out with the efficiency of up to 91.6% in 2 h. With the increase in polymer chain length, the efficiency decreased fleetly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
This contribution describes the synthesis and ring‐opening (co)polymerization of several L ‐lysine N‐carboxyanhydrides (NCAs) that contain labile protective groups at the ?‐NH2 position. Four of the following L ‐lysine NCAs were investigated: N?‐trifluoroacetyl‐L ‐lysine N‐carboxyanhydride, N?‐(tert‐butoxycarbonyl)‐L ‐lysine N‐carboxyanhydride, N?‐(9‐fluorenylmethoxycarbonyl)‐L ‐lysine N‐carboxyanhydride, and N?‐(6‐nitroveratryloxycarbonyl)‐L ‐lysine N‐carboxyanhydride. In contrast to the harsh conditions that are required for acidolysis of benzyl carbamate moieties, which are usually used to protect the ?‐NH2 position of L ‐lysine during NCA polymerization, the protective groups of the L ‐lysine NCAs presented here can be removed under mildly acidic or basic conditions or by photolysis. As a consequence, these monomers may allow access to novel peptide hybrid materials that cannot be prepared from ?‐benzyloxycarbonyl‐L ‐lysine N‐carboxyanhydride (Z‐Lys NCA) because of side reactions that accompany the removal of the Z groups. By copolymerization of these L ‐lysine NCAs with labile protective groups, either with each other or with γ‐benzyl‐L ‐glutamate N‐carboxyanhydride or Z‐Lys NCA, orthogonally side‐chain‐protected copolypeptides with number‐average degrees of polymerization ≤20 were obtained. Such copolypeptides, which contain different side‐chain protective groups that can be removed independently, are interesting for the synthesis of complex polypeptide architectures or can be used as scaffolds for the preparation of synthetic antigens or protein mimetics. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1167–1187, 2003  相似文献   

18.
Dendron‐like poly(ε‐benzyloxycarbonyl‐L ‐lysine)/linear poly(ethylene oxide) block copolymers (i.e., Dm‐PZLys‐b‐PEO, m = 0 and 3; Dm are the propargyl focal point poly(amido amine) dendrons having 2m primary amine groups) were for the first time synthesized by combining ring‐opening polymerization (ROP) of ε‐benzyloxycarbonyl‐L ‐lysine N‐carboxyanhydride (Z‐Lys‐NCA) and click chemistry, where Dm‐PZLys homopolypeptides were click conjugated with azide‐terminated PEO. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. Both homopolypeptides and copolymers presented a liquid crystalline phase transition for PZLys block, and the transition was irreversible. Moreover, the degree of crystallinity of PEO block within linear copolymers decreased from 96.2% to 20.4% with increasing PZLys composition, whereas that within dendritic copolymers decreased to zero. The secondary conformation of PZLys progressively changed from β‐sheet to α‐helix with increasing the chain length. These copolymers self‐assembled into spherical nanoparticles in aqueous solution, and the anticancer drug doxorubicin‐loaded nanoparticles gave a similar morphology compared with their blank counterparts. The drug‐loaded nanoparticles showed a triphasic drug‐release profile at aqueous pH 7.4 or 5.5 and 37 °C and sustained a longer drug‐release period for about 2 months. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Heteroarm H‐shaped terpolymers, [(poly(L ‐lactide))(polystyrene)]poly(ethylene oxide)[(polystyrene)(poly(L ‐lactide))], [(PLLA)(PS)]PEO[(PS)(PLLA)], in which PEO acts as a main chain and PS and PLLA as side arms, have been successfully prepared via combination of reversible addition–fragmentation transfer (RAFT) polymerization and ring‐opening polymerization (ROP). The first step is the synthesis of the PEO capped with one terminal dithiobenzoate group and one hydroxyl group at every chain end, [(HOCH2)(PhC(S)S)]PEO[(S(S)CPh)(CH2OH)] from the reaction of carboxylic acid with ethylene oxide. Then, the RAFT polymerization of styrene (St) was carried out using [(HOCH2)(PhC(S)S)]PEO[(S(S)CPh)(CH2OH)] as RAFT agent and AIBN as initiator, and the triblock copolymer, [(HOCH2)(PS)]PEO[(PS)(CH2OH)], was formed. Finally, the heteroarm H‐shaped terpolymers, [(PLLA)(PS)]PEO[(PS)(PLLA)], were produced by ROP of LLA, using triblock copolymer, [(HOCH2)(PS)]PEO[(PS)(CH2OH)], as macroinitiator and Sn(Oct)2 as catalyst. The target products and intermediates were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 789–799, 2007  相似文献   

20.
The surface modification of hydroxyapatite (HA) nanoparticles by the ring opening polymerization (ROP) of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (BLG‐NCA) was proposed to prepare the poly(γ‐benzyl‐L ‐glutamate) (PBLG)‐grafted HA nanoparticles (PBLG‐g‐HA) for the first time. HA nanoparticles were firstly treated by 3‐aminopropylthriethoxysilane (APS) and then the terminal amino groups of the modified HA particles initiated the ROP of BLG‐NCA to obtain PBLG‐g‐HA. The process was monitored by XPS and FT‐IR. The surface grafting amounts of PBLG on HA ranging from 12.1 to 43.1% were characterized by thermal gravimetric analysis (TGA). The powder X‐ray diffraction (XRD) analysis confirmed that the ROP only underwent on the surface of HA nanoparticles without changing its bulk properties. The SEM measurement showed that the PBLG‐g‐HA hybrid could form an interpenetrating net structure in the self‐assembly process. The PBLG‐g‐HA hybrid could maintain higher colloid stability than the pure HA nanoparticles. The in vitro cell cultures suggested the cell adhesion ability of PBLG‐g‐HA was much higher than that of pure HA.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号