首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
Summary: Tetraaniline‐block‐poly(L ‐lactide) diblock oligomers are synthesized via ring‐opening polymerization. The diblock oligomers cast from an L ‐lactide selective solvent (chloroform) show spherical aggregates for the leucoemeraldine state, and ring‐like structures that are composed of much smaller spherical aggregates for the emeraldine state. The formation mechanisms of the two different surface morphologies are discussed in detail.

Surface morphology changes induced by oxidation of the aniline segment of tetraaniline‐block‐poly(L ‐lactate) and drying effects.  相似文献   


2.
Stable aqueous dispersions of nanoparticles were prepared by polyelectrolyte complex formation between well‐defined poly(ethylene glycol)‐block‐poly(2‐acrylamido‐2‐methyl‐1‐propane sodium sulfonate) and poly(ethylene glycol)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] diblock copolymers. Controlled synthesis of the copolymers was achieved by water‐based atom transfer radical polymerization (ATRP). The nanoparticles were characterized by a quite narrow and monomodal size distribution as evidenced by dynamic light scattering (DLS) and confirmed by atomic force microscopy (AFM) after solution casting and freeze‐drying.

  相似文献   


3.
We investigate the complexation of ampholytic poly(N‐isopropylacylamide)‐block‐poly‐ (L ‐glutamic acid)‐block‐poly(L ‐lysine) (PNiPAM‐b‐PLG‐b‐PLLys) triblock copolymers and PNiPAM‐block‐(PLG‐co‐PLLys) diblock copolymers with counter charged anionic and cationic surfactants. Both triblock and diblock copolymers are able to selectively form complexes through either L ‐glutamic acid–cationic surfactant or L ‐lysine–anionic surfactant ionic pairs, depending on the protonated or deprotonated states of the ampholytic peptide units. The complexes show ordering at multiple length scales: i) the block copolymer length scale (101 nm), ii) the liquid crystalline length scale (100 nm), and, iii) the peptidic secondary structures length scale (100 nm). We show that the liquid crystalline period can be tuned by varying the random/block copolypeptide architectures and the composition of the ampholytic amino acid species.

  相似文献   


4.
Micelles made from linear polystyrene‐block‐polyisoprene (PS/PI) in decane are spherical. The differences in the structure of micelles made from linear and cyclic PS/PI were investigated using small‐angle X‐ray scattering at rest and under shear flow. The effect of shear revealed that micelles made from cyclic copolymer chains have an elongated shape, which was confirmed by transmission electron microscopy. The cyclization of diblock copolymer chains is thus a new method to control the micellar morphology.

  相似文献   


5.
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.

  相似文献   


6.
Well‐defined diblock copolymers composed of poly(N‐octylbenzamide) and polystyrene were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization of styrene with a polyamide chain transfer agent (CTA) prepared via chain‐growth condensation polymerization. Synthesis of a dithioester‐type macro‐CTA possessing the polyamide segment as an activating group was unsatisfactory due to side reactions and incomplete introduction of the benzyl dithiocarbonyl unit. On the other hand, a dithiobenzoate‐CTA containing poly(N‐octylbenzamide) as a radical leaving group was easily synthesized, and the RAFT polymerization of styrene with this CTA afforded poly(N‐octylbenzamide)‐block‐polystyrene with controlled molecular weight and narrow polydispersity.

  相似文献   


7.
The synthesis of diblock copolymers of aromatic polyether and polyacrylonitrile (PAN) was conducted by chain‐growth condensation polymerization (CGCP) and atom transfer radical polymerization (ATRP) from an orthogonal initiator. When CGCP for aromatic polyether was carried out from a PAN macroinitiator obtained by ATRP with an orthogonal initiator, decomposition of the PAN backbone occurred. However, when ATRP of acrylonitrile was conducted from an aromatic polyether macroinitiator obtained by CGCP followed by introduction of an ATRP initiator unit, the polymerization proceeded in a well‐controlled manner to yield aromatic polyether‐block‐polyacrylonitrile (polyether‐b‐PAN) with low polydispersity. This block copolymer self‐assembled in N,N‐dimethylformamide to form bundle‐like or spherical aggregates, depending on the length of the PAN units in the block copolymer.

  相似文献   


8.
Summary: PE‐block‐PS and P(E‐co‐P)‐block‐PS block copolymers were synthesised via sequential monomer addition during homogeneous polymerisation on various phenoxyimine catalysts. One phenoxyimine catalyst was tailored to produce high molecular weight block copolymers containing both, polyolefin and polystyrene segments. According to chromatographic analysis and TEM morphology studies, blends of block copolymers and PE homopolymers [or P(E‐co‐P), respectively] were formed. The direct olefin/styrene block copolymer synthesis on phenoxyimine catalysts represents an attractive, new one‐pot route to styrenic block copolymers which are commercially prepared by anionic styrene/diene block copolymerisation followed by hydrogenation.

  相似文献   


9.
Well‐defined polymethylene‐block‐polystyrene (PM‐b‐PS) diblock copolymers were synthesized via a combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) of styrene. A series of hydroxyl‐terminated polymethylenes (PM‐OHs) with different molecular weight and narrow molecular weight distribution were prepared using living polymerization of ylides following efficient oxidation in a quantitive functionality. Then, the macroinitiators (PM‐MIs ( = 1 900–15 000; PDI = 1.12–1.23)) transformed from PM‐OHs in ≈ 100% conversion initiated ATRPs of styrene to construct PM‐b‐PS copolymers. The GPC traces indicated the successful extension of PS segment ( of PM‐b‐PS = 5 000–41 800; PDI = 1.08–1.23). Such copolymers were characterized by 1H NMR and DSC.

  相似文献   


10.
Summary: An initiator for nitroxide mediated ‘living’ free radical polymerization was prepared with a fluorescent tag attached to the initiating alkyl radical terminus. This was used to synthesize amphiphilic poly(acrylic acid)‐block‐polystyrene diblock copolymers, which self assembled in a tetrahydrofuran/buffer solution to form structures that are visible by fluorescence.

  相似文献   


11.
A series of novel pH‐ and temperature‐responsive diblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly[(L ‐glutamic acid)‐co‐(γ‐benzyl L ‐glutamate)] [P(GA‐co‐BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA‐co‐BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region. Notably, when the BLG content in P(GA‐co‐BLG) block was more than 30 mol.‐%, the diblock copolymer responded sharply to a narrow pH change in the region of pH 7.4–5.5.

  相似文献   


12.
Summary: Coexisting bicontinuous morphologies, one ordered and one disordered, are investigated in a macrophase‐separated poly(styrene‐block‐isoprene) diblock copolymer/homopolystyrene (SI/hS) blend. Two‐phase behavior is attributed to the relatively high hS/S mass ratio (0.92). According to its crystallographic signature and channel coordination as discerned from three‐dimensional (3D) images generated by transmission electron microtomography (TEMT), the ordered morphology is classified as gyroid. The 3D local and global topological characteristics of both bicontinuous morphologies as measured directly from TEMT images are reported. The disordered morphology is further compared with molecular‐field simulations to ascertain the spatial distribution of the constituent species within the blend, thereby demonstrating the utility of high‐resolution 3D imaging coupled with molecular‐level simulations.

  相似文献   


13.
Block copolymers were synthesized by ring‐opening polymerization of L ‐lactide or D ‐lactide in the presence of mono‐ or dihydroxyl poly(ethylene glycol), using zinc metal as catalyst. The resulting copolymers were characterized by various techniques, namely 1H NMR spectroscopy, differential scanning calorimetry (DSC), X‐ray diffractometry, and Raman spectrometry. The composition of the copolymers was designed such that they were water soluble. Bioresorbable hydrogels were prepared from aqueous solutions containing both poly(L ‐lactide)/poly(ethylene glycol) and poly(D ‐lactide)/poly(ethylene glycol) block copolymers. Rheological studies confirmed the formation of hydrogels resulting from stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks.

Ring‐opening polymerization of L (D )‐lactide in the presence of dihydroxyl PEG using zinc powder as catalyst.  相似文献   


14.
Summary: Copolymerizations of St and NIPAM have been carried out through interfacial‐initiated microemulsion polymerization in a frozen state. FT‐IR and NMR spectroscopies confirm the occurrence of copolymerization between the two monomers. DSC analysis shows the existence of two glass transition temperatures of the resultant copolymers. The micellization of the copolymers is investigated by DLS and the temperature‐responsive behavior of the resultant micelles is observed. DSC and DLS results reveal the block feature of the obtained copolymers. Thus amphiphilic poly(styrene‐blockN‐isopropylacrylamide) is prepared by a one‐step interfacial‐initiated microemulsion polymerization.

Hydrodynamic radius of the micellar particles formed by (left), and a typical DSC trace of (right), the poly(styrene‐blockN‐isopropylacrylamide) prepared here.  相似文献   


15.
Summary: A novel non‐aqueous emulsion system, consisting of cyclohexane as the continuous and acetonitrile as the dispersed phase, is described. Stabilization of the system can be achieved by using polyisoprene‐block‐poly(methyl methacrylate) copolymers as emulsifiers. The suitability of this system for performing water‐sensitive, catalytic, and oxidative polymerizations and polycondensations is demonstrated by the synthesis of poly(3,4‐ethylenedioxythiophene), poly(thiophene‐3‐yl‐acetic acid), and polyacetylene. In all cases spherical nanoparticles with diameters as small as 23 nm can be obtained.

  相似文献   


16.
The formation of integral asymmetric membranes from ABC triblock terpolymers by non‐solvent‐induced phase separation is shown. They are compared with the AB diblock copolymer precursors. Triblock terpolymers of polystyrene‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐b‐P2VP‐b‐PEO) with two compositions are investigated. The third block supports the formation of a membrane in a case, where the corresponding diblock copolymer does not form a good membrane. In addition, the hydrophilicity is increased by the third block and due to the hydroxyl group the possibility of post‐functionalization is given. The morphologies are imaged by scanning electron microscopy. The influence of the PEO on the membrane properties is analyzed by water flux, retention, and dynamic contact angle measurements.

  相似文献   


17.
A novel chlorotitanium calix[4]arene complex was synthesized and tested, without activator, as catalyst for the polymerization of L ‐ and rac‐lactide under solvent‐free conditions. The catalyst displayed high activity, which depended on the monomer‐to‐catalyst molar ratio, and led to highly isotactic PLLA. Despite concomitant transesterification during the polymerization, polylactide formation was well‐controlled, the molar mass distribution indexes remaining in the restricted range of 1.2–1.4.

  相似文献   


18.
A strain‐induced microphase morphology has been established by the melt drawing process in a high molecular weight asymmetric polystyrene‐block‐poly(vinyl‐2‐pyridine) (PS‐b‐P2VP) diblock copolymer. For the first time to the best knowledge of the authors, the melt drawing process has been applied to block copolymers to produce free‐standing, ultrathin block copolymer films with a thickness of ≈100 nm. Intriguingly, during the melt drawing of the polymer a global strain‐induced unidirectional order of the microphase separated needle‐like domains of the block copolymer was generated. This morphology consists of a PS matrix with embedded highly oriented P2VP needle‐like domains oriented parallel to the drawing direction. The needle‐like morphology is explained by a simplified extended chain model of the diblock copolymer chains. Annealing of the films leads to a transition from the strain‐induced needle‐like morphology toward the quasi‐equilibrium sphere‐like morphology.

  相似文献   


19.
Well‐defined diblock condensation copolymers composed of an aromatic polyamide and an aromatic polyether have been synthesized by means of successive chain‐growth condensation polymerizations. Polymerization of a polyamide monomer with an orthogonally difunctional initiator is accompanied with side reactions. On the other hand, polymerization with a monofunctional initiator afforded well‐defined polyamide, which has been converted into a macroinitiator by introduction of a terminal 4‐fluorobenzophenone unit. Well‐defined diblock copolymers are obtained by polymerization of a polyether monomer in the presence of this macroinitiator.

  相似文献   


20.
Summary: A modified random phase approximation method with a cumulant expansion for the semi‐flexible structure factor of diblock copolymers was exercised to describe the phase separation behavior of semi‐flexible and polydisperse diblock copolymers. Scattering curves and spinodal diagrams were calculated applying monomer specific input parameters. The influence of polydispersity was included applying basic concepts of mathematical statistics utilizing several probability density distributions in the case of the two single blocks. In contrast to semi‐flexibility, the main effect of polydispersity was found to shift the spinodal up, thus to enlarge the range of existence of the homogeneous phase.

Twofold Schultz‐Zimm distribution of diblock copolymers.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号