首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Well‐defined telechelic‐type aromatic polyamides having a secondary amino group and a phenyl ester moiety at each chain end were prepared by the chain‐growth polycondensation of phenyl 4‐(octylamino)benzoate ( 1 ) with initiator 2 (Ntert‐butoxycarbonylated 1 ), followed by deprotection of the N‐protecting group of the initiator unit. This polycondensation was applied to the synthesis of well‐defined di‐ and triblock copolymers of aromatic polyamides and poly(tetrahydrofuran) (poly(THF)) by the reaction of the terminal secondary amino group of the polyamide with the living cationic propagating group of poly(THF).

Block copolymers of polyamide and poly(tetrahydrofuran).  相似文献   


3.
This review article describes the preparation of polymer brushes by nitroxide‐mediated radical polymerization using either the ‘grafting to’ or the ‘grafting from’ approach. The use of TEMPO as a classical initiator is intensively described. More sophisticated nitroxides are also included in the discussion. Brush formation on flat surfaces such as wafers and also on particles is reported. Finally, some applications of polymer brushes are presented.

  相似文献   


4.
Summary: A series of 7 homogeneous ethylene‐propylene copolymers is modeled by a Bernoullian, a terminal, a penultimate and a third order Markov model and it is found that the penultimate model describes this series best. The Bernoullian and terminal model prove to be insufficient and the third order Markov model is statistically not justified. Based on these results, a criterion to select the optimal Markovian order of homogeneous, single site catalyst produced copolymers is developed.

Schematic of the [(3‐MePh)(4‐MePh)C(2,7‐di‐tert‐BuFlu)(Cp)]ZrCl2 metallocene copolymerizing ethene and propene.  相似文献   


5.
New photosensitive alkoxyamines have been designed using molecular orbital calculations to improve the selective C O versus N O cleavage. The targeted light‐sensitive alkoxyamine is synthesized in one step and its reactivity under UV has been investigated using both ESR and LFP. The ability of this alkoxyamine to control the photopolymerization of n‐butyl acrylate is evidenced through a process called nitroxide‐mediated photopolymerization NMP2. The selected alkoxyamine is finally used to prepare covalently bonded multilayered micropatterns. This original application highlights the high potential of this technique for some specific applications that require spatial control.

  相似文献   


6.
A one‐pot procedure for the synthesis of hyperbranched polyethylenes tethered with ATRP initiating sites by chain walking ethylene copolymerization with an acrylate‐type ATRP inimer, 2‐(2‐bromoisobutyryloxy) ethyl acrylate (BIEA) is reported. Because of its ability to incorporate acrylate‐type comonomers and tolerance toward the α‐bromoester group, the chain walking Pd‐diimine catalyst, [(ArNC(Me) (Me)CNAr)Pd(CH3)(NCMe)]SbF6 (Ar = 2,6‐(iPr)2C6H3), allowed the successful synthesis of a series of hyperbranched copolymers tethered with 2‐bromoisobutyryl groups at different densities. These copolymers may serve as polyfunctional macroinitiators for the ATRP of functional monomers to further synthesize core‐shell structured functionalized copolymers with a hyperbranched polyethylene core grafted with side chains of the functional monomers.

  相似文献   


7.
Poly(N‐isopropylacrylamide) (PNIPAM) oligomer containing one adamantyl (AD) and two β‐cyclodextrin (β‐CD) moieties at the chain terminals, AD‐PNIPAM‐(β‐CD)2, was synthesized by atom transfer radical polymerization (ATRP) and successive click reactions. In aqueous solution, AD‐PNIPAM‐(β‐CD)2 spontaneously forms supramolecular thermoresponsive hyperbranched polymers via molecular recognition between AD and β‐CD moieties. To the best of our knowledge, this work represents the first report of the construction of supramolecular thermoresponsive hyperbranched polymers from well‐defined polymeric AB2 building units.

  相似文献   


8.
Summary: A new strategy was developed to prepare disorderly exfoliated nanocomposites, in which a soft siloxane surfactant with a weight‐average molecular weight ( ) of 1 900 was adopted to modify the clay. The modified clay slurry was then mixed with silicone rubber by hand, and exfoliation was achieved. The proposed mechanism thereof was verified by TEM and XRD. The physical entanglement of the soft siloxane surfactant plays a vital role in the diffusion and intercalation of the matrix molecules during the compounding of the slurry‐polymer mixture. This simple method is applicable to other silicone‐based materials reinforced by clay.

TEM micrograph of silicone rubber/clay‐sil nanocomposite.  相似文献   


9.
The free volume (voids) distribution in the lamellae of the conventional symmetric and amphiphilic diblock copolymers is studied via Monte–Carlo simulation based on the standard bond fluctuation model. Both in the conventional and amphiphilic block copolymers the voids are found to concentrate on the interfaces between the incompatible units, the magnitude of the effect being unexpectedly significant. A crystalline‐like ordering of voids with increase of the incompatibility between the different repeated units in amphiphilic copolymers is first reported and implications of this peculiarity for the morphology and mechanical properties of the amphiphilic copolymers are discussed.

  相似文献   


10.
The functionalization of magnetite (Fe3O4) nanoparticles with dopamine‐derived clickable biomimetic anchors is reported. Herein, an alkyne‐modified catechol‐derivative is employed as the anchor, as i) the catechol‐functional anchor groups possess irreversible covalent binding affinity to Fe3O4 nanoparticles, and ii) the alkyne terminus enables further functionalization of the nanoparticles by the grafting‐onto approach with various possibilities offered by ‘click’ chemistry. In the present work, azido‐end group functionalized Rhodamine and poly(ethylene glycol) (PEG) are utilized to coat the iron oxide nanoparticles to make them fluorescent and water soluble.

  相似文献   


11.
An automated parallel synthetic approach has been developed for synthesizing polymer libraries by the Macromolecular Design via the Interchange of Xanthates (MADIX) process. The experimental set‐up, parallel polymerizations, characterization, and reproducibility tests are detailed. Examples of acrylic diblock copolymers synthesized in this way are given.

Automated MADIX polymerizations of BA in the presence of a X1 ‐capped PEA.  相似文献   


12.
Cross‐linked lyotropic liquid crystal (LLC) assemblies represent a new class of polymer materials for membrane applications. These materials are formed by the phase‐segregation and self‐assembly of polymerizable amphiphiles in water into condensed ordered ensembles that can be cross‐linked in situ with retention of microstructure. The resulting LLC polymer networks have ordered, nanometer‐scale aqueous and cross‐linked organic domains, which can be used to affect gas solubility and diffusivity through the polymer to help separate molecules via the solution–diffusion mechanism. The open aqueous domains can also be used for pore transport and size exclusion with resolution on the molecular size level. The use and application potential of cross‐linked LLC assemblies as gas separation membranes, selective vapor barrier materials, and water nanofiltration and desalination membranes are presented.

  相似文献   


13.
14.
We propose a theoretical explanation of the parallel and perpendicular lamellar orientations in free surface films of symmetric polystyrene‐block‐polybutadiene diblock copolymers on silicon substrates (with a native SiOx layer). Two approaches are developed: A correction to the strong segregation theory and a qualitative analysis of the intermediate segregation regime. We show that the perpendicular orientation of the lamellae formed by the molecules of high molecular weight is stabilized by A–B interfacial interactions. They are weaker in the case of the perpendicular orientation of the lamellae, whereas the surface tension coefficient of the A–B interface decreases with the increase of the molecular weight.

  相似文献   


15.
Tough networks are prepared by photo‐crosslinking high‐molecular‐weight DLLA and TMC macromers. These amorphous networks exhibit tunable thermal and mechanical properties and have excellent shape‐memory features. Variation of the monomer ratio allows adjustment of Tg between approximately ?13 and +51 °C. The elastic moduli at room temperature can be varied between 4.5 and 2730 MPa. The crosslinks allow the networks to return to their original shape after deformation. 60:40 DLLA:TMC networks have Tg values between room temperature and body temperature, with mechanical properties at body temperature close to soft tissues. Several medical devices are prepared from these networks.

  相似文献   


16.
The synthesis and characterization of a soluble high molecular weight copolymer based on 4,8‐bis(1‐pentylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene and 2,1,3‐benzoxadiazole is presented. High efficiency organic photovoltaic (OPV) devices comprised of this polymer and phenyl‐C71‐butyric acid methyl ester (PC71BM) were fabricated by additive processing with 1‐chloronapthalene (CN). When the active layer is cast from pristine chlorobenzene (CB), power conversion efficiencies (PCEs) average 1.41%. Our best condition—using 2% chloronapthalene as a solvent additive in CB—results in an average PCE of 5.65%, with a champion efficiency of 6.05%.

  相似文献   


17.
The Michael reaction of chitosan with acrylic acid was carried out successfully, even in water alone as the reaction medium. As a consequence of its good solubility in water, the reaction product, N‐carboxyethylchitosan, showed excellent biodegradable properties with standard activated sludge.

  相似文献   


18.
The identification and control of a critical stage of polyaniline “nanotube” self‐assembly is presented, namely the granular agglomeration or growth onto nanorod templates. When the synthesis pH is held above 2.5, smooth insulating nanorods exhibiting hydrogen bonding and containing phenazine structures are produced, while below pH 2.5, small 15–30 nm granular polyaniline nanoparticles appear to agglomerate onto the available nanorod surface, apparently improving conductivity of the resulting structures by three orders of magnitude. This finding affects both fundamental theories of polyaniline nanostructure self‐assembly and their practical applications.

  相似文献   


19.
The synthesis and polymerization of novel diallyldimethylammonium ionic liquid monomers is described. A free‐radical polymerization follows a ring‐closing cyclopolymerization mechanism similar to the one observed previously for diallyldimethylammonium halides that leads to pyrrolidinium functional polymers. As previously observed in other families of polymeric ionic liquids, their physico‐chemical properties are seriously affected by the nature of the counter‐anion. As an example, the thermal stability increases following the trend SCN < < < bis(trifluoromethane)sulfonamide. Interestingly, this polymerization route may lead to the synthesis of a new family of random copolymers that have a similar poly(diallyldimethylammonium) backbone and a mixture of counter‐anions determined by the comonomer selection.

  相似文献   


20.
Many research groups have explored the properties and solution self‐assembly of main chain metallo‐supramolecular multiblock copolymers. Until recently, these metal complexes have been used to prepare mainly micelle type structures. However, the self‐assembly of such copolymers has been exploited further to create more advanced architectures which utilize the reversible supramolecular linkage of their building blocks as a key component in their synthesis. Furthermore, the incorporation of multiple orthogonal interactions and stimuli responsive polymers into their design, enables more precise external control of their properties. This feature article discusses recent developments and provides an insight into their potential exploitation and development for the creation of novel, smart, and responsive nanostructures.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号