共查询到20条相似文献,搜索用时 15 毫秒
1.
J. D. Jeyaprakash S. Samuel R. Dhamodharan Jürgen Rühe 《Macromolecular rapid communications》2002,23(4):277-281
The role of activator and deactivator species in the surface‐initiated atom‐transfer radical polymerization of styrene using CuBr/CuBr2/pentamethyldiethylenetriamine as a model system is described. The influence of initially added deactivator with respect to the degree of controlling the layer growth and thickness is studied. Variation of the activator concentration results in changes of the kinetics as well as brush thicknesses consistent with the well‐known rate laws of ATRP. 相似文献
2.
Olivier Y. F. Henry Ahmed D. Mehdi Sinead Kirwan Josep Luis Acero Sanchez Ciara K. O'Sullivan 《Macromolecular rapid communications》2011,32(18):1405-1410
Short DNA oligonucleotide branches are incorporated into acrylamide brushes via surface initiated atom transfer radical polymerization in an attempt to increase DNA surface density by building three‐dimensional molecular architectures. ATR‐FTIR as well as hybridization studies followed by SPR confirm the incorporation of the DNA sequences into the polymer backbone. MALDI‐TOF analysis further suggests that six acrylamide monomer units are typically separating DNA branches present on a single brushes approximately 26 units long. This new approach offers a promising alternative to SAM‐based nucleic acid and aptamer sensors and could enable the realization of more complex soft materials of controlled architecture capable of both recognition and signaling by including additional optically or electrochemically active moieties.
3.
UV‐Free Microfluidic Particle Fabrication at Low Temperature Using ARGET‐ATRP as the Initiator System 下载免费PDF全文
A new way to fabricate monodisperse polymer particles in a microfluidic device without UV‐light and without the need for high temperatures is described in this article. By applying an activator regeneration by electron transfer ‐ atom transfer radical polymerization (ARGET‐ATRP) initiator system in a co‐capillary microfluidic setup and by separating the monomer mixture in an initiator and a catalyst phase, a fast polymerization of the droplets at low temperature without premature curing and thus clogging of the capillaries can be achieved. The influence of the flow rates on the particle sizes and their polydispersity as well as the controlled character of the polymerization are investigated. The particle size is well adjustable, but the reaction is not controlled due to the high radical concentration needed for rapid polymerization. In addition, particles with incorporated UV‐dyes are produced as a proof of concept at low temperature.
4.
Summary: A diblock copolymer brush consisting of poly(methyl acrylate)‐block‐poly(pentafluoropropyl acrylate) (Si/SiO2//PMA‐b‐PPFA) was synthesized on a porous silica substrate. The brush was exposed to selective solvents, as well as thermal treatments, to induce a surface rearrangement. The rearrangement resulted in the selective loss or creation of an ultrahydrophobic layer by location of the fluoropolymer segment. This work demonstrates that surface rearrangements observed on flat surfaces can be transferred to porous substrates.
5.
Wen‐Jun Wang Pingwei Liu Bo‐Geng Li Shiping Zhu 《Journal of polymer science. Part A, Polymer chemistry》2010,48(14):3024-3032
Block copolymers of hyperbranched polyethylene (PE) and linear polystyrene (PS) or poly(methyl methacrylate) (PMMA) were synthesized via atom transfer radical polymerization (ATRP) with hyperbranched PE macroinitiators. The PE macroinitiators were synthesized through a “living” polymerization of ethylene catalyzed with a Pd‐diimine catalyst and end‐capped with 4‐chloromethyl styrene as a chain quenching agent in one step. The macroinitiator and block copolymer samples were characterized by gel permeation chromatography, 1H and 13C NMR, and differential scanning calorimetry. The hyperbranched PE chains had narrow molecular weight distribution and contained a single terminal benzyl chloride per chain. Both hyperbranched PE and linear PS or PMMA blocks had well‐controlled molecular weights. Slow initiation was observed in ATRP because of steric effect of hyperbranched structures, resulting in slightly broad polydispersity index in the block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3024–3032, 2010 相似文献
6.
7.
8.
Debora Bontempo Nicola Tirelli Giancarlo Masci Vittorio Crescenzi Joffrey A. Hubbell 《Macromolecular rapid communications》2002,23(7):417-422
Atom‐transfer radical polymerization has been used for polymerizing water‐soluble monomers from solid polymeric particles, intended as a model for any polymeric functional surface. Depending on the polarity of substrate and solvent, homogeneous initiation throughout the particles or pure surface initiation could be obtained. In the last case, polymer layers were obtained with thicknesses up to several tens of microns, still active for block copolymerization. 相似文献
9.
Youyong Xu Andreas Walther Axel H. E. Müller 《Macromolecular rapid communications》2010,31(16):1462-1466
A supramolecular complex between an ionic monomer 3‐sulfopropyl methacrylate (SPMAK) and crown ether 18‐crown‐6 (18C6) has been employed to prepare a strong anionic cylindrical polyelectrolyte brush poly(potassium 3‐sulfopropyl methacrylate) (PSPMAK) by atom transfer radical polymerization (ATRP) in polar solvent dimethyl sulfoxide (DMSO). This strategy solved the problem of the solubilities of the incompatible hydrophobic poly‐initiator and hydrophilic ionic monomer. The formation of the PSPMAK brush is well proven by 1H NMR, aqueous gel permeation chromatography (GPC), dynamic light scattering (DLS), static light scattering (SLS), atomic force microscopy (AFM), and cryogenic transmission electron microscopy (cryo‐TEM) measurements. Cleavage of the side chains and further analysis reveal that the initiating efficiency of the polymerization is as low as 0.35.
10.
Sun Hwa Lee Daniel R. Dreyer Jinho An Aruna Velamakanni Richard D. Piner Sungjin Park Yanwu Zhu Sang Ouk Kim Christopher W. Bielawski Rodney S. Ruoff 《Macromolecular rapid communications》2010,31(3):281-288
A method for growing polymers directly from the surface of graphene oxide is demonstrated. The technique involves the covalent attachment of an initiator followed by the polymerization of styrene, methyl methacrylate, or butyl acrylate using atom transfer radical polymerization (ATRP). The resulting materials were characterized using a range of techniques and were found to significantly improve the solubility properties of graphene oxide. The surface‐grown polymers were saponified from the surface and also characterized. Based on these results, the ATRP reactions were determined to proceed in a controlled manner and were found to leave the structure of the graphene oxide largely intact.
11.
Yun Wang Lu Lu Hu Wang Dairen Lu Kang Tao Ruke Bai 《Macromolecular rapid communications》2009,30(22):1922-1927
A facile strategy for synthesis of α‐heterobifunctional polystyrenes is reported. The novel functional polystyrenes have been successfully synthesized via a combination of atom transfer radical polymerization (ATRP) and chemical modification of end‐functional groups. First, ε‐caprolactone end‐capped polystyrenes with controlled molecular weight and low polydispersity were prepared by ATRP of styrene using α‐bromo‐ε‐caprolactone (αBrCL) as an initiator. Then, removal of the terminal bromine atom was performed with iso‐propylbenzene in the presence of CuBr/PMDETA. Finally, ring‐opening modifications of the caprolactone group were carried out with amines, n‐butanol and H2O to produce novel polystyrenes containing two different functional groups at one end.
12.
Lynne A. McCullough Bruno Dufour Krzysztof Matyjaszewski 《Journal of polymer science. Part A, Polymer chemistry》2009,47(20):5386-5396
2‐Acrylamido‐2‐methyl‐N‐propanesulfonic acid (AMPSA) was successfully polymerized via atom transfer radical polymerization (ATRP) using a copper chloride/2,2′‐bipyridine (bpy) catalyst complex after in situ neutralization of the acidic proton in AMPSA with tri(n‐butyl)amine (TBA). A 5 mol % excess of TBA was required to completely neutralize the acid and prevent protonation of the bpy ligand, as well as to avoid side reactions caused by large excess of TBA. The use of activators generated by electron transfer (AGET) ATRP with ascorbic acid as reducing agent resulted in both increased conversion of the AMPSA monomer during polymerization (up to 50% with a 0.8 [ascorbic acid]/[Cu(II)] ratio) and much shorter polymerization times (<30 min). Block copolymers and molecular brushes containing AMPSA side chains were prepared using this method, and the solution and surface behavior of these materials were investigated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5386–5396, 2009 相似文献
13.
14.
Chun Feng Zhong Shen Dong Yang Yaogong Li Jianhua Hu Guolin Lu Xiaoyu Huang 《Journal of polymer science. Part A, Polymer chemistry》2009,47(17):4346-4357
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009 相似文献
15.
Adam P. Smith Cassandra L. Fraser 《Journal of polymer science. Part A, Polymer chemistry》2002,40(23):4250-4255
The synthesis of polystyrene‐b‐poly(methyl methacrylate) diblock copolymers with a luminescent ruthenium(II) tris(bipyridine) [Ru(bpy)3] complex at the block junction is described. The macroligand precursor, polystyrene bipyridine‐poly(methyl methacrylate) [bpy(PS–H)(PMMA)], was synthesized via the atom transfer radical polymerization of styrene and methyl methacrylate from two independent, sequentially activated initiating sites. Both polymerization steps resulted in the growth of blocks with sizes consistent with monomer loading and narrow molecular weight distributions (i.e., polydispersity index < 1.3). Subsequent reactions with ruthenium(II) bis(bipyridine) dichloride [Ru(bpy)2Cl2] in the presence of Ag+ generated the ruthenium tris(bipyridine)‐centered diblock, which is of interest for the imaging of block copolymer microstructures and for incorporation into new photonic materials. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4250–4255, 2002 相似文献
16.
PIPAAm-brush grafted glass substrates with various graft densities and chain lengths were prepared via surface-initiated ATRP. Temperature-dependent physicochemical properties of the surfaces were characterized by means of ATR/FT-IR spectroscopy, XPS, AFM, and contact angle measurements. ATRP conditions influence the amount of grafted PIPAAm and the surface wettability and roughness of the substrate. Fibronectin adsorption and EC adhesion increased with decreasing density of PIPAAm brushes. EC adhesion was diminished with increasing PIPAAm graft length. Thus, the preparation of PIPAAm brush surface with various graft densities and chain lengths using the surface-initiated ATRP is an effective method for modulating thermo-responsive properties of surfaces. 相似文献
17.
Shijie Ding J. Alaina Floyd Keisha B. Walters 《Journal of polymer science. Part A, Polymer chemistry》2009,47(23):6552-6560
A series of poly(amino (meth)acrylate) brushes, poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA), poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA), poly(2‐(dimethylamino)ethyl acrylate) (PDMAEA), poly(2‐(tert‐butylamino)ethyl methacrylate) (PTBAEMA), has been synthesized via surface‐confined controlled/living radical polymerizations using surface‐confined initiator from silane self‐assembled monolayers (SAMs) on silicon (Si) wafer substrates. Chemical methods and efficacies for two types of living radical polymerization, atom transfer radical (ATRP) and single electron transfer (SET‐LRP), are described and contrasted for the surface confined polymerization of poly(amino (meth)acrylate)s. Effects of solvent, catalyst/ligand system, and temperature on polymerization success were examined. Chemical compositions after each reaction step were characterized with FTIR spectroscopy, contact angle goniometry, and X‐ray photoelectron spectroscopy while the SAM and polymer brush thicknesses were measured with spectroscopic ellipsometry. For the first time, this study demonstrates successful surface‐confined polymerization of a series of poly(amine (meth)acrylate) brushes from Si‐SAM substrates using a copper metal electron donor catalyst. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6552–6560, 2009 相似文献
18.
Yansheng Qiu Wei Zhang Yuefang Yan Jian Zhu Zhengbiao Zhang Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2010,48(22):5180-5188
Three tetrafunctional bromoxanthate agents (Xanthate3‐Br, Xanthate2‐Br2, and Xanthate‐Br3) were synthesized. Initiative atom transfer radical polymerizations (ATRP) of styrene (St) or reversible addition fragmentation chain transfer (RAFT) polymerizations of vinyl acetate (VAc) proceeded in a controlled manner in the presence of Xanthate3‐Br, Xanthate2‐Br2, or Xanthate‐Br3, respectively. The miktoarm star‐block copolymers containing polystyrene (PS) and poly(vinyl acetate) (PVAc) chains, PSn‐b‐PVAc4‐n (n = 1, 2, and 3), with controlled structures were successfully prepared by successive RAFT and ATRP chain‐extension experiments using VAc and St as the second monomers, respectively. The architecture of the miktoarm star‐block copolymers PSn‐b‐PVAc4‐n (n = 1, 2, and 3) were characterized by gel permeation chromatography and 1H NMR spectra. Furthermore, the results of the cleavage of PS3‐b‐PVAc and PVAc2‐b‐PS2 confirmed the structures of the obtained miktoarm star‐block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
19.
Sean P. Cullen Sangkeun Ha Max G. Lagally Padma Gopalan 《Journal of polymer science. Part A, Polymer chemistry》2008,46(17):5826-5838
We report the synthesis and characterization of a photocrosslinkable copolymer containing reactive epoxy groups for binding biomolecules. The epoxide‐containing copolymer poly(glycidyl methacrylate‐ran‐2‐(acryloyloxy) ethyl 2‐methylacrylate) offers distinct advantages such as ease of application to various substrates, enhanced stability of the bound oligonucleotide, low autofluorescence, and the ability to be photopatterned allowing localization of the linkers. The copolymer uses pendant acryloyl groups to control the crosslinking without sacrificing the epoxide groups. The films were characterized using ellipsometry, atomic force microscopy, and fluorescence microscopy. The films on glass, silicon wafer, and stainless steel showed no appreciable degradation in water, tetrahydrofuran, and acetone for ~4 months. The surface topography for a given thickness of crosslinked film was dictated by the deposition conditions. A 16mer oligonucleotide was immobilized on the thin films. A linear relationship between the film thickness and amount of oligonucleotide immobilized was observed with a maximum signal‐to‐background ratio (S/B) of 225 for a 60‐nm‐thick film, a value 50% higher than the S/B for an epoxide monolayer. The crosslinked films maintained a high fluorescence signal following long aqueous washing which is appealing for biological microarrays, immobilizing proteins, and study of slow differentiating cells where stability of the scaffold is relevant. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5826–5838, 2008 相似文献
20.
Dave J. Adams Iain Young 《Journal of polymer science. Part A, Polymer chemistry》2008,46(18):6082-6090
Polymer–peptide conjugates are receiving significant interest. Here, we show that, under the appropriate conditions, a small family of oligopeptide‐based initiators can be used successfully to initiate the polymerization of methacrylic monomers by atom transfer radical polymerization (ATRP), generating new examples of such materials. However, the use of the peptidic amide‐based initiators results in polymers which have a higher molecular weight than expected and a significantly higher polydispersity than those prepared from ester‐based initiators. In many cases significant initiator remains, suggesting that either not all peptides successfully initiate polymerization or that significant termination reactions occur early in the reaction. This low initiator efficiency agrees with other reports for amino acid‐based initiators. It therefore appears that such amide‐based initiators can be used successfully, but have a significantly lower applicability than the more commonly used ester‐based initiators. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6082–6090, 2008 相似文献