首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 1‐oxo‐2‐propyl‐4‐(substituted)phenylimino‐1,2,3,4,5,6,7,8‐octahydro‐[1,4,3]thiazaphosphorino[4,3‐a][1,3,2]benzodiazaphosphorine 3‐oxides ( 5a–g ) has been synthesized in excellent yields via the reaction of 1‐(2‐bromoethyl)‐2,3‐dihydro‐3‐propyl‐1,3,2‐benzodiazaphosphorin‐4(1H)‐one 2‐oxide with (substituted) phenyl isothiocyanates, which contain the proximate imino and phosphoryl groups in the fused heterocycle. The structures of all of the new compounds were confirmed by spectroscopic methods and microanalyses. The results from X‐ray crystallography analysis of 5a showed that the proximate imino and phosphoryl groups are not coplanar due to their being jointly located in the fused heterocycle, thus having ring tension, and this then destroys the conjugation between the CN and the PO moieties. As a result, the length of the P C bond, measured as 1.8285(18) Å, is just the same as that of a P C bond not involved in conjugation (1.80–1.85 Å). Also, the C(1), C(2), S(1), C(3), P(1), and N(2) atoms of the [1,4,3]thiazaphosphorino moiety exist preferably in the boat conformation. The coplanar C(1), N(2), C(3), and S(1) atoms, within an average deviation of 0.0564 Å, form the ground floor of the boat conformation, whereas, the P(1) and C(2) atoms are on the same side of the coplanar structure with the distance of 0.7729 Å and 0.7621 Å, respectively. On the other hand, around the CN double bond, the P(1) C(3) bond and the N(1) C(11) bond are in a trans relationship because of the repulsive action of the n‐propyl group in the 2‐position of the title compound. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:599–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10041  相似文献   

2.
In order to search for novel antitumor and antiviral agents with high activity and low toxicity, some 2‐propyl‐5‐(substituted)phenyl‐1,4‐dioxo‐1,2,3,4,5,6,7,8‐octahydro‐[1,4,2]diazaphosphorino[1,2‐a][1,3,2]benzodiazaphosphorine 3‐oxides ( 2a–e ) have been designed incorporating the proximate carbonyl and phosphoryl groups into the benzoannulated phosphadiamide heterocycle and synthesized in acceptable yields. These compounds contain the proximate carbonyl and phosphoryl groups in the fused heterocycle. Their structures were confirmed by spectroscopic methods and microanalyses. The results from X‐ray crystallography analysis of 2a showed that the proximate carbonyl and phosphoryl groups are not coplanar because of their being jointly located in the fused heterocycle, having ring tension, and this then destroys the conjugation between the CO and the PO moieties. As a result, the length of the P C bonds measured as 1.851(3)–1.852(3) Å are just the same as that of a P C bond not involved in conjugation (1.80–1.85 Å). Also,the C(1), C(2), C(3), N(2), N(3), and P(1) atoms of the [1,4,2]diazaphosphorino moiety exist preferably in the boat conformation. The coplanar C(1), C(3), N(2), and N(3) atoms, within an average deviation of 0.0102 Å, form the ground floor of the boat conformation, whereas the P(1) and C(2) atoms are on the same side of the coplanar structure with the distance of 0.7067 and 0.6315 Å, respectively. © 2002 John Wiley & Sons, Inc. Heteroatom Chem 13:63–71, 2002; DOI 10.1002/hc.1107  相似文献   

3.
Two coordination polymers {[Cd(phen)](C6H8O4)3/3} ( 1 ) and {[Cd(phen)](C7H10O4)3/3} · 2H2O ( 2 ) were structurally characterized by single crystal X‐ray diffraction methods. In 1 (C2/c (no. 15), a = 16.169(2)Å, b = 15.485(2)Å, c = 14.044(2)Å, β = 112.701(8)°, U = 3243.9(7)Å3, Z = 8), the Cd atoms are coordinated by two N atoms of one phen ligand and five O atoms of three adipato ligands to form mono‐capped trigonal prisms with d(Cd‐O) = 2.271‐2.583Å and d(Cd‐N) = 2.309, 2.390Å. The [Cd(phen)] moieties are bridged by adipato ligands to generate {[Cd(phen)](C6H8O4)3/3} chains, which, via interchain π—π stacking interactions, are assembled into layers. Complex 2 (P1¯(no. 2), a = 9.986(1)Å, b = 10.230(3)Å, c = 11.243(1)Å, α = 66.06(1)°, β = 87.20(1)°, γ = 66.71(1)°, U = 955.7(2)Å3, Z = 2) consists of {[Cd(phen)](C7H10O4)3/3} chains and hydrogen bonded H2O molecules. The Cd atoms are pentagonal bipyramidally coordinated by two N atoms of one phen ligand and five O atoms of three pimelato ligands with d(Cd‐O) = 2.213—2.721Å and d(Cd‐N) = 2.329, 2.372Å. Through interchain π—π stacking interactions, the {[Cd(phen)](C7H10O4)3/3} chains resulting from [Cd(phen)] moieties bridged by pimelato ligands are assembled in to layers, between which the hydrogen bonded H2O molecules are sandwiched.  相似文献   

4.
Synthesis, Crystal Structures, and Vibrational Spectra of [(Ph3P)2N]2[(W6Cl )I ] · 2 Et2O · 2 CH2Cl2 and [(Ph3P)2N]2[(W6Cl )(NCS) ] · 2 CH2Cl2 By treatment of [(W6Cl)I]2– with (SCN)2 in dichloromethane at –20 °C the hexaisothiocyanato cluster anion [(W6Cl)(NCS)]2– is formed. X‐ray structure determinations have been performed on single crystals of [(Ph3P)2N]2[(W6Cl)I] · 2 CH2Cl2 · 2 Et2O ( 1 ) (triclinic, space group P1, a = 10.324(5), b = 14.908(3), c = 17.734(8) Å, α = 112.78(2)°, β = 99.13(3)°, γ = 92.02(3)°, Z = 1) and [(Ph3P)2N]2[(W6Cl)(NCS)] · 2 CH2Cl2 ( 2 ) (triclinic, space group P1, a = 11.115(2), b = 14.839(2), c = 17.036(3) Å, α = 104.46(1)°, β = 105.75(2)°, γ = 110.59(1)°, Z = 1). The thiocyanate ligands of 2 are bound exclusively via N atoms with W–N bond lengths of 2.091–2.107 Å, W–N–C angles of 173.1–176.9° and N–C–S angles of 178.1–179.3°. The vibrational spectra exhibit characteristic innerligand vibrations at 2067–2045 (νCN), 879–867 (νCS) and 490–482 (δNCS). Based on the molekular parameters of the X‐ray determination of 1 the vibrational spectra of the corresponding (n‐Bu4N) salt of 1 are assigned by normal coordinate analysis. The valence force constants are fd(WW) = 1.61, fd(WI) = 1.23 and fd(WCl) = 1.10 mdyn/Å.  相似文献   

5.
The reaction of 2‐amino‐benzothiazole with allyl bromide resulted in a mixture of 2‐imino‐3‐allyl‐benzothiazole and 2‐imino‐3‐allyl‐benzothiazolium bromide.Using such a mixture and copper(II) chloride in acetonitrile solution in alternating‐current electrochemical synthesis crystals of the [(CuCl)C10H10SN2] ( I ) have been obtained. The same procedure, performed in ethanol solution, has led to formation of [C10H11SN2+]2[Cu2Cl4]2? ( II ). In the same manner the bromine derivative [C10H11SN2+]2[Cu2Br4]2? ( III ) has been synthesized. All three compounds were X‐ray structurally investigated. I :monoclinic space group P21/n, a = 13.789(6), b = 6.297(3), c = 13.830(6) Å, β = 112.975(4)°, V = 1105.6 (9) Å3, Z = 4 for CuCl·C10H10 SN2 composition. Compounds II and III are isomorphous and crystallize in triclinic space group. II a = 7.377(3), b = 8.506(3), c = 9.998(4) Å, α = 79.892(10)°, β = 82.704(13)°, γ = 78.206(12)°, V = 601.9(4) Å3, Z = 1. III a = 7.329(2), b = 8.766(3), c = 10.265(3) Å, α = 79.253(9)°, β = 82.625(9)°, γ = 77.963(9)°, V = 630.9(3) Å3, Z = 1. In the structure I [(CuCl)C10H10SN2] building blocks are bound into infinitive spiral‐like chains via strong N‐H..Cl hydrogen bonds. In the zwitter‐ionic II and III compounds copper and halide atoms form centrosymmetric [Cu2X4]2? anions, which are interconnected via N‐H..X hydrogen bonds into infinite butterfly‐like chains. The strongest Cu‐(C=C) π‐interaction has been observed in structure I , where copper possesses coordination number 3. Increasing copper coordination number to 4 in II as well as replacing chlorine atoms by bromine ones in III suppresses markedly this interaction.  相似文献   

6.
Multipulse pulsed laser polymerization coupled with size exclusion chromatography (MP‐PLP‐SEC) has been employed to study the depropagation kinetics of the sterically demanding 1,1‐disubstituted monomer di(4‐tert‐butylcyclohexyl) itaconate (DBCHI). The effective rate coefficient of propagation, k, was determined for a solution of monomer in anisole at concentrations, c, 0.72 and 0.88 mol L?1 in the temperature range 0 ≤ T ≤ 70 °C. The resulting Arrhenius plot (i.e., ln k vs. 1/RT) displayed a subtle curvature in the higher temperature regime and was analyzed in the linear part to yield the activation parameters of the forward reaction. In the temperature region where no depropagation was observed (0 ≤ T ≤ 50 °C), the following Arrhenius parameters for kp were obtained (DBCHI, Ep = 35.5 ± 1.2 kJ mol?1, ln Ap = 14.8 ± 0.5 L mol?1 s?1). In addition, the k data was analyzed in the depropagatation regime for DBCHI, resulting in estimates for the associated entropy (?ΔS = 150 J mol?1 K?1) of polymerization. With decreasing monomer concentration and increasing temperature, it is increasingly more difficult to obtain well structured molecular weight distributions. The Mark Houwink Kuhn Sakurada (MHKS) parameters for di‐n‐butyl itaconate (DBI) and DBCHI were determined using a triple detection GPC system incorporating online viscometry and multi‐angle laser light scattering in THF at 40 °C. The MHKS for poly‐DBI and poly‐DBCHI in the molecular weight range 35–256 kDa and 36.5–250 kDa, respectively, were determined to be KDBI = 24.9 (103 mL g?1), αDBI = 0.58, KDBCHI = 12.8 (103 mL g?1), and αDBCHI = 0.63. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1931–1943, 2007  相似文献   

7.
Lithium Triamidostannate(II), Li[Sn(NH2)3] – Synthesis and Crystal Structure Rusty-red glistening, transparent crystals of Li[Sn(NH2)3] were obtained by reaction of metallic lithium with tetraphenyl tin in liquid ammonia at 110 °C. The structure was determined from X-ray single-crystal diffractometer data: Space group P 21/n, Z = 4, a = 8.0419(9) Å, b = 7.1718(8) Å, c = 8.5085(7) Å, β = 90.763(8)°, R1 (F o ≥ 4σ(F o)) = 2.8%, wR2 (F ≥ 2σ(F )) = 5.3%, N(F ≥ 2σ(F )) = 1932, N(Var.) = 65. The crystal structure contains trigonal pyramidal complex anions [Sn(NH2)3] with tin at the apex, which are connected to layers of sequence A B A B … by lithium in tetrahedra-double units [Li(NH2)2/2(NH2)2]2.  相似文献   

8.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

9.
Synthesis, Vibrational Spectra, and Crystal Structure of ( n ‐Bu4N)2[(W6Cl )F ] · 2 CH2Cl2 and 19F NMR Spectroscopic Evidence of the Mixed Cluster Anions [(W6Cl )F Cl ]2–, n = 1–6 The reaction of (n‐Bu4N)2[(W6Cl)Cl] with CF3COOH in dichloromethane gives intermediately a mixture of the cluster anions [(W6Cl)(CF3COO)Cl]2–, n = 1–6. By treatment with NH4F the outer sphere coordinated trifluoracetato ligands are easily substituted and the components of the series [(W6Cl)FCl], n = 1–6 are formed and characterized by their distinct 19F NMR chemical shifts. An X‐ray structure determination has been performed on a single crystal of (n‐Bu4N)2[(W6Cl)F] · 2 CH2Cl2 (orthorhombic, space group Pbca, a = 15.628(4), b = 17.656(3), c = 20.687(4) Å, Z = 4). The low temperatur IR (60 K) and Raman (20 K) spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(WW) = 1.89, fd(WF) = 2.43 and fd(WCl) = 0.93 mdyn/Å.  相似文献   

10.
Cs[Na(NH3)6][B10H10]·NH3 was synthesised from cesium and disodium‐decahydro‐closo‐decaborate Na2B10H10 in liquid ammonia, from which it crystallized in form of temperature sensitive colorless plates (triclinic, P1¯, a = 8.4787(7) Å, b = 13.272(1) Å, c = 17.139(2) Å, α = 88.564(1)°, β = 89.773(1)°, γ = 81.630(1)°, V = 1907.5(3) Å3, Z = 4). The compound is the first example of an alkali metal boranate with two different types of cations. The decahydro‐closo‐decaborate dianions [B10H10]2— and the cesium cations form a equation/tex2gif-stack-1.gif[Cs2(B10H10)2]2— layer parallel to the ac plane. These layers are separated by N—H···N‐hydrogen bonded hexamminesodium cations.  相似文献   

11.
Metastable CuBrSe2 was prepared by the fast cooling of a melt (T ≥ 400°C) of copper(I) bromide and selenium in the ratio 1:2 to room temperature. The crystal structure was determined from single crystals separated from the solidified melt. The compound crystallizes isotypic to CuXTe2 (X = Cl, Br, I) and CuClSe2, space group P21/n (No. 14) with a = 7.8838(9) Å, b = 4.6439(4) Å, c = 11.183(1) Å, β = 103.44(1)°, V = 398.2(1) Å3, and Z = 4. The refinement converged to R = 0.0424 and wR = 0.0851 (all reflections), respectively. In the crystal structure formally neutral one‐dimensional selenium chains [Se] are coordinated to copper(I) bromide. Slow cooling of the melt or heating of solid CuBrSe2 to 250°C for some hours results in the decomposition of the compound, and a mixture of CuBrSe3 and CuBr is formed. DSC measurements indicate, that this decomposition starts at about 200°C. Nevertheless, a melting point of 342°C can be determined. In Raman spectra of CuBrSe2, selenium‐selenium stretching modes are found at νSe–Se = 241 and 219 cm–1.  相似文献   

12.
Indium(III) chloride forms in water with potassium 1,2‐dithiooxalate (dto) and potassium 1,2‐dithiosquarate (dtsq) stable coordination compounds. Due to the higher bridging ability of the 1,2‐dithiooxalate ligand in all cases only thiooxalate bridged binuclear complexes were found. From 1,2‐dithioquadratate with an identical donor atom set mononuclear trischelates could be isolated. Five crystalline complexes, (BzlMe3N)4[(dto)2In(dto)In(dto)2] ( 1 ), (BzlPh3P)4[(dto)2In(dto)In(dto)2] ( 2 ), (BzlMe3N)3[In(dtsq)3] ( 3 ), (Bu4N)3[In(dtsq)3] ( 4 ) and (Ph4P)[In(dtsq)2(DMF)2] ( 5 ), have been isolated and characterized by X‐ray analyses. Due to the type of the complex and the cations involved these compounds crystallize in different space groups with the following parameters: 1 , monoclinic in P21/c with a = 14.4035(5) Å, b = 10.8141(5) Å, c = 23.3698(9) Å, β = 124.664(2)°, and Z = 2; 2 , triclinic in P with a = 11.3872(7) Å, b = 13.6669(9) Å, c = 17.4296(10) Å, α = 88.883(5)°, β = 96.763(1)°, γ = 74.587(5)°, and Z = 1; 3 , hexagonal in R3 with a = 20.6501(16) Å, b = 20.6501(16) Å, c = 19.0706(13) Å and Z = 6; 4 , monoclinic in P21/c with a = 22.7650(15) Å, b = 20.4656(10) Å, c = 14.4770(9) Å, β = 101.095(5)°, and Z = 4; 5 , triclinic in P with a = 9.2227(6) Å, b = 15.3876(9) Å, c = 15.5298(9) Å, α = 110.526(1)°, β = 100.138(1)°, γ = 101.003(1)°, and Z = 2.  相似文献   

13.
Crystal Structures and Hydrogen Bonding for β-Be(OH)2 and ϵ-Zn(OH)2 Crystals of β-Be(OH)2 sufficient for x-ray structure determination were grown from a saturated hot solution of freshly prepared Be(OH)2 in NaOH by slowly cooling down and in the case of ϵ-Zn(OH)2 by electrochemical oxidation of zinc in a NaOH/NH3 solution. The structures of the isotypic compounds were determined including the H-positions: β-Be(OH)2: P212121, Z = 4, a = 4.530(2) Å, b = 4.621(2) Å, c = 7.048(2) Å N(F > 3σ F) = 432, N(parameters) = 36, R/Rw = 0.044/0.052 ϵ-Zn(OH)2: P212121, Z = 4, a = 4.905(3) Å, b = 5.143(4) Å, c = 8.473(2) Å N(F > 3σ F) = 1107, N(parameters) = 36, R/Rw = 0.025/0.027For neutron diffraction experiments microcrystalline β-Be(OD)2 was prepared. With time-of-flight data the D positions were determined giving d(O–D) = 0.954(4) Å. The structures are closely related to that of β-cristobalite: As in SiO2 a quarter of tetrahedral interstices in a distorted cubic close packed arrangement of O is regularily occupied by the metal atoms. The filled O tetrahedra are twisted against one another in such a way, that O–H…O–H hydrogen bonds are favoured which are surprisingly stronger in the zinc than in the beryllium compound.  相似文献   

14.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis.  相似文献   

15.
(C2H10N2)[BPO4F2] — Strukturbeziehungen zwischen [BPO4F2]2— und [Si2O6]4— Colourless crystals of (C2H10N2)[BPO4F2] were prepared from mixture of ethylendiamine, H3BO3, BF3 · C2H5NH2, H3PO4 and HCl under mild hydrothermal conditions (220 °C). The crystal structure was determined by single crystal methods (triclinic, P1¯ (no. 2), a = 451.85(5) pm, b = 710.20(8) pm, c = 1210.2(2) pm, α = 86.08(1)°, β = 88.52(2)°, γ = 71.74(1)°, Z = 2) and contains infinite tetrahedral zweier‐single‐chains {[BPO4F2]2—} which are isoelectronic (48e) with the polyanions {[Si2O6]4—} of the pyroxene family.  相似文献   

16.
(S)‐1‐Cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐ 4‐carboxylate [ (S)‐11 ] and (R)‐1‐cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐4‐carboxylate [( R)‐11 ] enantiomers, both greater than 99% enantiomeric excess, and their corresponding homopolymers, poly[ (S)‐11 ] and poly[ (R)‐11 ], with well‐defined molecular weights and narrow molecular weight distributions were synthesized and characterized. The mesomorphic behaviors of (S)‐11 and poly[ (S)‐11 ] are identical to those of (R)‐11 and poly[ (R)‐11 ], respectively. Both (S)‐11 and (R)‐11 exhibit enantiotropic SA, S, and SX (unidentified smectic) phases. The corresponding homopolymers exhibit SA and S phases. The homopolymers with a degree of polymerization (DP) less than 6 also show a crystalline phase, whereas those with a DP greater than 10 exhibit a second SX phase. Phase diagrams were investigated for four different pairs of enantiomers, (S)‐11 /( R)‐11 , (S)‐11 /poly[ (R)‐11 ], and poly[ (S)‐11 ]/poly[ (R)‐11 ], with similar and dissimilar molecular weights. In all cases, the structural units derived from the enantiomeric components are miscible and, therefore, isomorphic in the SA and S phases over the entire range of enantiomeric composition. Chiral molecular recognition was observed in the SA and SX phases of the monomers but not in the SA phase of the polymers. In addition, a very unusual chiral molecular recognition effect was detected in the S phase of the monomers below their crystallization temperature and in the S phase of the polymers below their glass‐transition temperature. In the S phase of the monomers above the melting temperature and of the polymers above the glass‐transition temperature, nonideal solution behavior was observed. However, in the SA phase the monomer–polymer and polymer–polymer mixtures behave as an ideal solution. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3631–3655, 2000  相似文献   

17.
Crystals of the title compound were obtained by annealing a powder of Tl2Te3 in a vertical temperature gradient (230 °C–240 °C, 4 weeks). Tl2Te3 crystallizes in space group C2/c with lattice parameters of a = 13.275(1) Å, b = 6.562(1) Å, c = 7.918(1) Å, and β = 107.14°(2). The tellurium atoms form chains [Te32–], consisting of interconnected linear triatomic · Te–^Te–Te · groups which are isosteric with XeF2. The Te–Te distances of the XeF2-like units are 3.02 Å, the connecting ones 2.83 Å.  相似文献   

18.
Two mixed ligand ZnII complexes [Zn(phen)L2/2](H2L) ( 1 ) and [(phen)2Zn(μ‐L)Zn(phen)2]L � 11H2O ( 2 ) with H2L = suc‐cinic acid were prepared and crystallographically characterized. Complex 1 crystallizes in the monoclinic space group C2/c (no. 15) with a = 13.618(1) Å, b = 9.585(1) Å, c = 15.165(1) Å, β = 96.780(6)°, V = 1965.6(3)Å3, Z = 4 and complex 2 in the triclinic space group P 1¯ (no. 2) with a = 12.989(2)Å, b = 14.464(2)Å, c = 18.025(3)Å, α = 90.01(1)°, β = 109.69(1)°, γ = 112.32(1)°, V = 2917.4(8) Å3, Z = 2. 1 consists of succinic acid molecules and 1D zigzag [Zn(phen)(C4H4O4)2/2] polymeric chains, in which the tetrahedrally coordinated Zn atoms are bridged by bis ‐ monodentate succinato ligands. Succinic acid molecules play an important role in supramolecular assemblies of the polymeric chains into 2D layers as well as in the stacking of 2D layers. 2 is composed of [(phen)2Zn(μ‐L)Zn(phen)2]2+ complex cations, succinate anions and hydrogen bonded water molecules. Within the divalent cations, Zn atoms are octahedrally coordinated by four N atoms of two phen ligands and two O atoms of one bis‐chelating succinato ligand. Through the intermolecular π—π stacking interactions, the complex cations form positively charged 2D layers, between which the noncoordinating succinate anions and water molecules are sandwiched.  相似文献   

19.
We report an improved synthesis of 1‐halocarba‐closo‐dodecaborate anions 1‐Hal–CB11H and their efficient conversion to the undecamethylated anions 1‐Hal–CB11Me (Hal = Cl, Br, I) and the hexamethylated anions 1‐Hal‐(7–12)‐(CH3)6–CB11H (Hal = F, Cl) by treatment with methyl triflate in sulfolane in the presence of calcium hydride to remove the triflic acid byproduct. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:217–223, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20224  相似文献   

20.
The coordination polymers [CuBr(1, 7‐phen‐κN7)] ( 1a ), [CuI(1, 7‐phen)] ( 2a ) and [(CuI)2(1, 7‐phen‐κN7)] ( 2b ) may be prepared by treatment of the appropriate copper(I) halide with 1, 7‐phenanthroline (1, 7‐phen) in acetonitrile. 1a exhibits staircase CuBr double chains, 2a novel quadruple CuI chains. Their thermal properties were investigated by DTA‐TG and temperature resolved powder X‐ray diffraction. On heating, both 1:1 compounds decompose to 2:1 polymers and then finally to CuBr or CuI. With 4, 7‐phenanthroline (4, 7‐phen), CuBr affords both 1:1 and 2:1 complexes ( 5a , 5b ), CuI 1:1 , 2:1 and 3:1 complexes( 6a , 6b , 6c ) in acetonitrile at 20 °C. 5a and 6a display lamellar coordination networks, with the former containing zigzag CuBr single chains, the latter 4‐membered (CuI)2 rings. A second 2:1 complex [(CuI)2(4, 7‐phen‐μ‐N4, N7)] ( 6b ′) with staircase CuI double chains can be obtained by reacting CuI with 4, 7‐phen in a sealed glass tube at 110 °C. Both 5a and 6a exhibit thermal decomposition pathways of the general type 1:1 → 2:1 → 3:1 → CuX, and novel CuX triple chains are proposed for the isostructural 3:1 polymers 5c and 6c . X‐ray structures are reported for complexes 1a , 2b , [(CuCN)3(CH3CN)(1, 7‐phen‐μ‐N1, N7)] ( 3c· CH3CN), [CuSCN(1, 7‐phen‐κN7)] ( 4a ), 5a , 6a and [CuCN(4, 7‐phen‐μ‐N4, N7)] ( 7a ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号