首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   

2.
The three‐dimensional (3D) coordination polymer [Zn6(btc)4(4,4′‐bipy)5]n ( 1 ) (btc = 1,2,4‐benzenetricarboxylate; 4,4′‐bipy = 4,4′‐bipyridine) has been prepared hydrothermally. The zinc(II) centers in 1 are bridged by btc ligands to form a trinuclear subunit, which is further linked by 4,4′‐bipy and btc ligands to construct the 3D coordination architecture. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
A novel aromatic diamine monomer, 3,3′‐diisopropyl‐4,4′‐diaminodiphenyl‐3′′,4′′‐difluorophenylmethane (PAFM), was successfully synthesized by coupling of 2‐isopropylaniline and 3,4‐difluorobenzaldehyde. The aromatic diamine was adopted to synthesize a series of fluorinated polyimides by polycondensation with various dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) via the conventional one‐step method. These polyimides presented excellent solubility in common organic solvents, such as N,N‐dimethylformamide (DMF), N,N‐dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N‐methyl‐2‐pyrrolidone (NMP), chloroform (CHCl3), tetrahydrofuran (THF) and so on. The glass transition temperatures (Tg) of fluorinated polyimides were in the range of 260–306°C and the temperature at 10% weight loss in the range of 474–502°C. Their films showed the cut‐off wavelengths of 330–361 nm and higher than 80% transparency in a wavelength range of 385–463 nm. Moreover, polymer films exhibited low dielectric properties in the range of 2.76–2.96 at 1 MHz, as well as prominent mechanical properties with tensile strengths of 66.7–97.4 MPa, a tensile modulus of 1.7–2.1 GPa and elongation at break of 7.2%–12.9%. The polymer films also showed outstanding hydrophobicity with the contact angle in the range of 91.2°–97.9°.  相似文献   

4.
Structure analyses of 4,4′‐bis(4‐hydroxy­butyl)‐2,2′‐bi­pyridine, C18H24N2O2, (I), and 4,4′‐bis(4‐bromo­butyl)‐2,2′‐bi­pyridine, C18H22Br2N2, (II), reveal intermolecular hydrogen bonding in both compounds. For (I), O—H·N intermolecular hydrogen bonding leads to the formation of an infinite two‐dimensional polymer, and π stacking interactions are also observed. For (II), C—H·N intermolecular hydrogen bonding leads to the formation of a zigzag polymer. The two compounds crystallize in different crystal systems, but both mol­ecules possess Ci symmetry, with one half mol­ecule in the asymmetric unit.  相似文献   

5.
The reaction of 4,4′‐bipy with dimethyltin(IV) chloride iso‐thiocyanate affords the one‐dimensional (1D) coordination polymer, [Me2Sn(NCS)Cl·(4,4′‐bipy)]n ( 1 ), whereas reaction of dimethyltin(IV) dichloride with sodium pyrazine‐2‐carboxylate in the presence of potassium iso‐thiocyanate affords the two‐dimensional (2D) coordination polymer, {[Me2Sn(C4H3N2COO)2]2 [Me2Sn(NCS)2]}n ( 2 ). Both coordination polymers were characterized by elemental analysis and infrared spectroscopy in addition to 1H and 13C NMR spectroscopy of the soluble coordination polymer ( 1 ). A single‐crystal structure determination showed that the asymmetric unit in 1 contains Me2Sn(NCS)Cl and 4,4′‐bipy moieties and a 1D infinite rigid chain structure forms through bridging of the 4,4′‐bipy ligand between tin atoms and the geometry around the tin atom is a distorted octahedral. Coordination polymer 2 contains two distinct tin atom geometrics in which one tin atom is seven coordinate, and the other is six coordinate. The two tin atom environments are best described as a pentagonal bipyramidal in the former and distorted octahedral in the latter where the carboxylate groups bridge the two tin atoms and construct a 2D‐coordination polymer. The 119Sn NMR spectroscopy indicates the octahedral geometry of 1 retains in solution. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:699–706, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/.20736  相似文献   

6.
A new coordination polymer, [Co2(L)2(4,4′‐bipy)]n·3nH2O ( 1 ) based on 5‐(3‐methyl‐5‐phenyl‐4H‐1,2,4‐triazol‐4‐yl)isophthalic acid (H2 L ) and 4,4′‐bipyridine (4,4′‐bipy) has been hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction, XRPD, IR, and elemental analysis. Temperature‐dependent magnetic susceptibility and thermal degradation for 1 were also studied. The asymmetric unit of compound 1 consists of two crystallographically independent Co(II) ion, two L 2? ligand, one 4,4′‐bipy ligand, and three lattice water molecules. The 2D triangle networks were linked by the bridging 4,4′‐bipy ligand to give rise to a 2‐fold interpenetrated 3D architecture. The simplest cyclic motif of the 2D networks is a triangle ring consisting of three Co(II) cations and three L 2? ligands. So we can define Co(II) ions as 4‐connected nodes and the L 2? ligands as 3‐connected nodes. Thus, the 3D structure can be described as a 2‐fold parallel interpenetrated ins InS 3,4‐conn topology.  相似文献   

7.
A new series of CoII tri‐tert‐butoxysilanethiolate complexes with bidentate N,N′‐ligands (L) such as pyrazine, quinoxaline and 4,4′‐bipy was obtained: for pyrazine and quinoxaline the complexes are binuclear {[Co{SSi(tBuO)3}2]2(μ‐L)} with metal atoms linked by an adequate heterocyclic base L. The use of 4,4′‐bipy resulted in a coordination polymer [Co{μ‐SSi(tBuO)3}{SSi(tBuO)3}(μ‐4,4′‐bipy)]n and two polymorphic forms of {[Co{SSi(tBuO)3}2]2(μ‐4,4′‐bipy)}. Pyridyl rings in one polymorph form a torsion angle of 0.57°, whereas a rotation about the linking C–C bond of 4,4′‐bipy in second polymorph is significant and results in a torsion angle of 72.4°. Complexes were analysed and characterised using elemental analysis, solid state IR and UV/Vis spectroscopy, and single‐crystal X‐ray analysis.  相似文献   

8.
The title compound, catena‐poly[[tris(μ‐4‐methylbenzoato)‐κ2O:O4O:O′‐(4‐methylbenzoato‐κ2O,O′)dizinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn2(C8H7O2)4(C10H8N2)]n, is a novel coordination polymer. The asymmetric unit contains two unique ZnII ions, four 4‐methylbenzoate ligands and one 4,4′‐bipyridine (4,4′‐bpy) ligand, all in general positions. The four 4‐methylbenzoate ligands link the two ZnII centres to form a dinuclear unit, with a Zn...Zn separation of 3.188 (2) Å, which can be regarded as a supramolecular secondary building unit (SBU). These SBUs are further bridged by 4,4′‐bpy ligands, forming a novel one‐dimensional infinite chain. There are π–π stacking interactions between the benzene rings of the 4‐methylbenzoate ligands and the pyridyl rings of the 4,4′‐bpy ligands, leading to the formation of a corrugated layer. These layers are further assembled via C—H...O hydrogen bonds into a three‐dimensional supramolecular network structure. Coordination polymers such as the title compound are of interest for their potential applications as functional materials.  相似文献   

9.
A new aromatic polyamide containing a pendant ethoxycarbonyl group was successfully synthesized from the reaction between 4,4′‐diamino‐2′‐ethoxycarbonylbenzanilide and terephthaloyl chloride. The new polymer was soluble in organic solvents such as N‐methyl‐2‐pyrrolidone and dimethylacetamide, and a tough and transparent film was cast from the polymer solution with viscosities ranging from 2.6 to 5.6 dL/g. When the polymer film was heat‐treated at a temperature greater than 300 °C, a cyclization reaction occurred between the ethoxycarbonyl group and the adjacent amide bond to form a benzoxazinone unit in the polymer backbone. The thermal decomposition onset temperature of the cyclized film was about 523 °C, which was somewhat lower than that of poly(p‐phenylene terephthalamide) (PPTA; 566 °C); however, the decomposition rate was slower than that of PPTA to yield a higher char residue. The dispersion temperature of the uncyclized poly(4,4′‐diamino‐2′‐ethoxycarbonylbenzanilide terephthalamide) (PDEBTA) was about 340 °C, whereas that of the cyclized PDEBTA was not clear. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 936–942, 2000  相似文献   

10.
A new coordination polymer (CP), namely poly[(μ‐4,4′‐bipyridine)(μ3‐3,4′‐oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)]n or [Co(3,4′‐obb)(4,4′‐bipy)]n ( 1 ), was prepared by the self‐assembly of Co(NO3)2·6H2O with the rarely used 3,4′‐oxydibenzoic acid (3,4′‐obbH2) ligand and 4,4′‐bipyridine (4,4′‐bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction reveals that each CoII ion is six‐coordinated by four O atoms from three 3,4′‐obb2? ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4′‐bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4′‐obb2? ligands, affording an eight‐membered Co2O4C2 ring which is further extended into a two‐dimensional [Co(3,4′‐obb)]n sheet along the ab plane via 3,4′‐obb2? functioning as a bidentate bridging ligand. The planes are interlinked into a three‐dimensional [Co(3,4′‐obb)(4,4′‐bipy)]n network by 4,4′‐bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π–π interactions between the parallel 4,4′‐bipy ligands.  相似文献   

11.
As distinguished from the conventional preparation of poly(aryl ether ketone)s utilizing 4,4′‐difluorobenzophenone, a novel synthetic method of high molecular weight poly(phthalazinone ether ketone) derived from 4,4′‐dichlorobenzophenone was studied. Reaction conditions to get high molecular weight polymer were investigated in details. Experimentally, sulfolane was chosen as the reaction media and high molecular weight polymer could be obtained in 7–8 hr at 210°C. The cyclic oligomers in the polymer product reduced to below 3.0% when the concentration of the reactant is 1.6–1.7 g/ml. Fourier transform infrared (FT‐IR), 1H NMR, and elemental analysis were used to confirm the structure of the obtained polymer. The amorphous polymer showed reasonable solubility in selective solvent, such as chloroform and N‐methyl‐2‐pyrrolidone, and tough, flexible, and transparent thin film can be readily prepared from their N‐methyl‐2‐pyrrolidone solution. The obtained polymer showed high glass transition temperature (Tg) up to 261°C detected by differential scanning calorimetry (DSC), and the temperature of 5% weight loss under nitrogen higher than 500°C detected by thermal gravimetric analysis (TGA), indicating its excellent thermal stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

13.
A new diimide‐dicarboxylic acid, 2,2′‐dimethyl‐4,4′‐bis(4‐trimellitimidophenoxy)biphenyl (DBTPB), containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by the condensation reaction of 2,2′‐dimethyl‐4,4′‐bis(4‐minophenoxy)biphenyl (DBAPB) with trimellitic anhydride in glacial acetic acid. A series of new polyamide‐imides were prepared by direct polycondensation of DBAPB and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP), using triphenyl phosphite and pyridine as condensing agents. The polymers were produced with high yield and moderate to high inherent viscosities of 0.86–1.33 dL · g−1. Wide‐angle X‐ray diffractograms revealed that the polymers were amorphous. Most of the polymers exhibited good solubility and could be readily dissolved in various solvents such as NMP, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF), dimethyl sulfoxide, pyridine, cyclohexanone, and tetrahydrofuran. These polyamide‐imides had glass‐transition temperatures between 224–302 °C and 10% weight loss temperatures in the range of 501–563 °C in nitrogen atmosphere. The tough polymer films, obtained by casting from DMAc solution, had a tensile strength range of 93–115 MPa and a tensile modulus range of 2.0–2.3 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 63–70, 2001  相似文献   

14.
The sorption of compressed carbon dioxide and methane in a series of all‐aromatic poly(etherimide) (PEI) thin films is presented. The polymer films are derived from the reactions between an arylether diamine (P1) and four different dianhydrides [3,3′,4,4′‐oxydiphthalic dianhydride (ODPA), 3,3′,4,4′ biphenyltetra‐carboxylic dianhydride (BPDA), 3,3′,4,4′‐benzo‐phenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA)] that have been selected to systematically change the flexibility of the polymer backbone, the segmental mobility, and the nonequilibrium excess free volume (EFV) of the polymer. The EFV, gas sorption capacities, and sorption‐ and temperature‐induced dynamic changes in film thickness and refractive index have been investigated by spectroscopic ellipsometry. The sorption capacity depends to a great extent on the PEI backbone composition. PMDA‐P1 shows the highest carbon dioxide sorption, combined with the lowest sorption selectivity because of the predominant sorption of methane in the EFV. For ODPA‐P1, the highest sorption selectivity is obtained, while it shows little long‐term relaxations at carbon dioxide pressures up to 25 bar. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 986–993  相似文献   

15.
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxy­biphenyl‐3,3′‐di­carboxyl­ato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis.  相似文献   

16.
The title compound, [HgCl2(C10H8N2)]n, features two‐dimensional [HgCl2(4,4′‐bipy)]n neutral networks (4,4′‐bipy is 4,4′‐bipyridine), based on an octahedral Hg atom coordinated by four μ2‐Cl atoms and two μ2‐4,4′‐bipy ligands in trans positions, yielding a HgCl4N2 octahedron. The structure has mmm symmetry about the Hg atoms, with most of the atoms on at least one mirror plane, but the unsubstituted C atoms of the 4,4′‐bipy rings are disordered across a mirror plane. Photoluminescent investigations reveal that the title compound displays a strong emission in the green region, which probably originates from a ligand‐to‐ligand charge‐transfer transition.  相似文献   

17.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

18.
The hydro­thermal reaction of an aqueous solution of Cu(CH3COO)2·H2O, 1,2,4,5‐benzene­tetra­carboxylic acid and 4,4′‐bi­pyridine gave rise to the interesting title three‐dimensional polymer {[Cu6(btec)3(4,4′‐bpy)3(H2O)2]·2H2O}n (btec is 1,2,4,5‐benzene­tetra­carboxyl­ate, C10H2O84−, and 4,4′‐bpy is 4,4′‐bi­pyridine, C10H8N2), in which each btec ligand links six copper(II) cations into a lamellar [Cu6(btec)3(H2O)2]n sub­polymer framework. There are two distinct diamine units and two distinct carboxylate units, with one of each lying across an inversion centre.  相似文献   

19.
A novel chiral (S)‐BINAM‐based fluorescent polymer sensor was designed and synthesized by the polymerization of 4,4′‐((2,5‐dibutoxy‐1,4‐phenylene)bis(ethyne‐2,1‐diyl))‐dibenzaldehyde ( M‐1 ) with (S)‐2,2′‐binaphthyldiamine (S‐BINAM, M‐2 ) via Schiff's base formation. The resulting helical chiral polymer sensor exhibited remarkable “turn‐on” bright blue fluorescence color upon the addition of trivalent metal ions under a commercially available UV lamp; this change can be clearly observed by the naked eye for direct visual discrimination at low concentration. More importantly, the addition of trivalent metal cations can lead to a most pronounced change of CD spectra of the chiral polymer indicating this kind chiral sensor can also be used as a sole probe for selective recognition of trivalent metal cations based on CD spectra. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4070–4075  相似文献   

20.
3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (4,4′‐carbonyldiphathalic anhydride) was reacted with L ‐leucine in a mixture of acetic acid and pyridine (3 : 2), and the resulting imide‐acid [N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid] was obtained in quantitative yield. The compound was converted to the N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid chloride by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride with several aromatic diamines such as 4,4′‐diaminodiphenyl methane, 2,4‐diaminotoluene, 4,4′‐sulfonyldianiline, p‐phenylenedi‐amine, 4,4′‐diaminodiphenylether, and m‐phenylenediamine was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as O‐cresol. The polymerization reactions proceeded rapidly compared with the conventional solution polycondensation and were completed within 6 min, producing a series of optically active poly(amide‐imide)s with a high yield and an inherent viscosity of 0.37–0.57 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 177–186, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号