首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary: Two types of ink‐jet inks are presented: ink containing an aqueous dispersion of silver nanoparticles and an oil‐in‐water microemulsion‐based ink. The metallic ink contains nanoparticles of silver, which are formed in the presence of an ionic polymeric stabilizer. Sintering of the printed image obtained with the use of such silver‐based inks at temperatures as low as 300 °C results in formation of patterns possessing noticeable conductivity. The microemulsion inks are based on a thermodynamically stable microemulsion, in which the dispersed oil phase is a volatile solvent containing a water‐insoluble colorant. After contact of the jetted ink droplets with a substrate, nanodroplets of the microemulsion are converted into nanoparticles of the solubilized colorant. In some cases, it was found that the evaporation of microemulsion ink droplets leads to formation of rings composed of ordered nanoparticles.

Scheme of ink‐jet printing of an oil‐in‐water microemulsion followed by conversion of the nanodroplets into nanoparticles, caused by quick evaporation of the solvent within the microemulsion droplets. Therefore, the ink behaves as a dye‐based ink prior to printing, but after printing it behaves like a pigment‐based ink.  相似文献   


2.
Summary: We illustrate the ink‐jet printing of a thin‐film library of donor/acceptor systems useful in bulk heterojunction solar cells and their characterization utilizing a UV‐vis/fluorescence plate reader and an optical profilometer. In addition, the morphology of the films has been examined by atomic force microscopy (AFM). The ink‐jet processing technology allows printing of arrays of different donor/acceptor compositions on one substrate as well as the subsequent fast optical screening of the electron transfer processes. The investigated films consist of blends of a poly(methyl methacrylate) polypyridyl ruthenium(II ) copolymer (RuPMMA) as electron donor material (p‐type) and C60 fullerene (PC60BM) as well as heptyl viologen (C7‐V) derivatives as electron acceptor materials (n‐type).

Ink‐jet printing process and investigated donor/acceptor pair (RuPMMA‐PC60BM).  相似文献   


3.
Summary: The fabrication of polymer diodes on a glass substrate by an ink‐jet printing technique is reported. Both an n‐type semiconductive polymer, poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐(1‐cyanovinylene)phenylene] (CN‐PPV), and a p‐type semiconductive polymer, polypyrrole (PPy) or poly(3,4‐ethylenedioxythiophene) (PEDOT), were printed through a piezoelectric ink‐jet printer. The printed CN‐PPV/PPy and CN‐PPV/PEDOT diodes showed good rectifying characteristics. These results indicate the potential of the low‐cost ink‐jet printing technique to produce polymer microelectronic devices and circuits.

Schematic diagram of the printed polymer diode  相似文献   


4.
Summary: Due to its capability of dispensing very small volumes of different liquids in a controlled manner, ink‐jet printing is well suited for combinatorial experiments. The multi‐nozzle ink‐jet delivery system is especially advantageous for parallel chemical synthesis of different materials. We have used ink‐jet printing of an oxidizing agent to pattern a pre‐coated conducting polymer, poly(3,4‐ethylenedioxy)‐thiophene‐poly(styrene sulfonate) (PEDOT‐PSS), yielding electrodes with predefined shapes and a controlled degree of sheet resistivity for use in gray‐scale organic light‐emitting devices (OLEDs). The electrical and optical properties of the PEDOT‐PSS layer are modified via chemical interaction using the oxidizing agent. These experiments were performed using a desktop ink‐jet printer in conjunction with common graphic software which employed color functions such as CMY (cyan, magenta and yellow), HSL (hue, saturation and luminosity) and RGB (red, green and blue).

Photographs of gray‐scale OLEDs patterned on PEDOT‐PSS surfaces by an ink‐jet printer on plastic substrates.  相似文献   


5.
Summary: Combinatorial exploration of material compositions and associated informatics having influenced medicinal chemistry are now transforming the material sciences. In ceramic science, both thin and thick film combinatorial techniques are available. Ink‐jet printing provides a pathway to the latter. Mixing behind the nozzle and in front of the nozzle in well plates is described here. Such instruments are described and compared, and compositional calibration details for both are given.

Calibration library printed from a ceramic ternary system.  相似文献   


6.
Summary: Defined films of luminescent ruthenium(II ) polypyridyl‐poly(methyl methacrylate) (PMMA) and iridium(III ) polypyridyl‐polystyrene (PS) copolymers could be prepared by ink‐jet printing. The copolymers were deposited on photoresist‐patterned glass substrates. Films as thin as 120 nm could be printed with a roughness of 1 to 2%. In addition, the film thickness could be varied in a controlled way through the number of droplets deposited per unit area. The topography of the ink‐jet printed films was analyzed utilizing an optical profilometer. The absorbance and emission spectra were measured using fast parallel UV‐vis and fluorescence plate reader.

Photo of the solutions of luminescent ruthenium (left) and iridium (right) containing polymers in a glass microtiter plate (top). The subsequently prepared films using ink‐jet dispensing techniques are shown below.  相似文献   


7.
Functionalized polyfluorene receives more and more attention due to its wide applications. Here, the syntheses of three novel polyfluorene‐based methacrylate macromonomers exhibiting a vast flexibility for further applications are reported. Their emissions strongly depend on the end groups and thus the macromonomers provide blue, green, and red emissions simultaneously with the same excitation light of 365 nm. Their well‐defined copolymers with 2‐(dimethylamino) ethyl methacrylate via reversible addition‐fragmentation chain transfer polymerization are investigated in detail. These copolymers exhibit high quantum yields in solid film (up to 0.8), and self‐assemble into photoluminescent nanoparticles in aqueous solutions with pure blue, green, and red emissions. By simply mixing them, perfect white light emission with high quality is obtained. These aqueous nanoparticles solutions are ready for ink‐jet printing to produce exquisite bright and colorful fluorescent pictures.

  相似文献   


8.
Summary: A drop‐on‐demand ink‐jet printer has been used to print a silver‐organic solution onto glass substrates. Conductive silver tracks were obtained by heat treatment of the ink‐jet printed deposits at temperatures ranging from 125 °C–200 °C in air. Resistivity values were found to have dropped to two to three times the theoretical resisitivity of bulk silver after temperatures of 150 °C and above were used.

Resistivity values of a silver‐based ink.  相似文献   


9.
Summary: The driving forces behind the development of flexible electronics are their flexibility, lightweightedness, and potential for low‐cost manufacturing. However, because of physical limitations, traditional thermal processes cause deformations in the flexible substrate. As a result, the adhesion quality of the printed wires is deteriorated. This article reviews recent developments in printing circuits on a flexible substrate by combining self‐assembled polyelectrolytes, ink‐jet printing of a catalyst, and electroless plating of metals. The limitations and potential applications of this technology are also discussed. Experiments implementing this technology demonstrated significant results. By a vibration‐induced assistance during an ink‐jet printing catalyst process, line width and blurring can be controlled to within ±3% variation. Following the IPC 6013 standard for flexible electronics, the results after thermal cycling (288 °C, 6 times) and a hot oil test (260 °C, 3 times) indicated that the metallic circuit had retained excellent adhesion properties and electric characteristics. We also report the first successful demonstration of a metal film in a via‐hole inner wall on a flexible substrate. This novel fabrication method is ideal for the realization of large area, flexible electronics and future multilayer flexible substrate application, such as flexible display, chip on flexible substrate, etc., particularly where traditional lithographic processes can not be applied.

Flexible high‐density circuit on an FR‐4 substrate (left) and picture of via hole with copper inner wall (right).  相似文献   


10.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

11.
Summary: The integration of gradients of enzyme activity in microstructured biosensor arrays enables intrinsic on‐line quality control of biosensor performance. Multiple sensor elements with different compositions and hence varying responses for the same analyte are evaluated as a basis for improving data reliability. The formation of glucose oxidase/polymer microstructures using a piezo microdispenser and their examination by scanning electrochemical microscopy (SECM) are used to demonstrate the feasibility of this approach.

Optical microscope image of grids obtained by dispensing of 1 mg/mL GOx and 2 mg/mL Vinnapas® mixture.  相似文献   


12.
Summary: Poly(dimethylsiloxane) (PDMS) star polymers having a nanosized silica particle as a core were prepared by reacting silica nanoparticles with monoglycidylether‐terminated poly(dimethylsiloxane). This star polymer was a hybrid material having an extremely high content of silica. The PDMS arms formed an organic domain to separate the silica particles and to prevent particle aggregation. The star polymers exhibited good thermal stability and high activation energy of their degradation reaction, in comparison to the linear PDMS polymer and the PDMS/silica blending materials. This star polymer can be used as a flame retardant for polymeric materials and this preparation technique can be applied to prepare other star polymers.

An SEM image of poly(dimethylsiloxane) star polymers having nanosized silica particles as a core.  相似文献   


13.
Via γ‐ray irradiation polymerization, poly(methyl methacrylate) (PMMA)/clay nanocomposites were successfully prepared with reactive modified clay and nonreactive clay. With reactive modified clay, exfoliated PMMA/clay nanocomposites were obtained, and with nonreactive clay, intercalated PMMA/clay nanocomposites were obtained. Both results were confirmed by X‐ray diffraction and high‐resolution transmission electron microscopy. PMMA extracted from PMMA/clay nanocomposites synthesized by γ‐ray irradiation had higher molecular weights and narrow molecular weight distributions. The enhanced thermal properties of the PMMA/clay nanocomposites were characterized by thermogravimetric analysis and differential scanning calorimetry. The improved mechanical properties of PMMA/clay were characterized by dynamic mechanical analysis. In particular, the enhancement of the thermal properties of the PMMA/clay nanocomposites with reactive modified clay was much more obvious than that of the PMMA/clay nanocomposites with nonreactive clay. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3218–3226, 2003  相似文献   

14.
The N‐(trimethylsilyl)bis(trifluoromethanesulfonyl)imide‐catalyzed (Me3SiNTf2‐catalyzed) group transfer polymerization (GTP) of methyl methacrylate (MMA) has been studied for synthesizing stereospecific star‐shaped poly(methyl methacrylate)s (PMMAs). The catalytic property of Me3SiNTf2 for the GTP of MMA using 1‐methoxy‐1‐trimethylsilyloxy‐2‐methyl‐propene as the initiator was confirmed by a kinetic investigation and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry measurement. The initiating efficiency (f) of Me3SiNTf2 was 0.94–1.00, which was estimated by the value of Mn(calcd)/Mn(SEC). The Me3SiNTf2‐catalyzed GTP of MMA was carried out using initiators possessing three, four, and six MTS groups (MTS3, MTS4, and MTS6, respectively) under the condition of [MMA]0/[MTS3, MTS4, or MTS6]0 = 120 at ?55 °C. All the obtained PMMAs exhibited unimodal and narrow molecular weight distributions as Mw/Mns = 1.03–1.04 and the Mw(MALS)s of the 3‐, 4‐, and 6‐armed star‐shaped PMMAs (PMMA3, PMMA4, and PMMA6, respectively) were 12.9, 12.9, and 13.4 kgmol?1, respectively, which fairly agreed with the calculated Mw(calcd) values. The syndiotacticities, rrs, of PMMA3, PMMA4, and PMMA6 were in the range of 87–89%. The stereoblock synthesis of PMMA3, PMMA4, and PMMA6 was performed by the first and second polymerizations at ?55 and 45 °C; the rrs of the first and second PMMA blocks were 87.0, 87.0, and 86.0% and 65.0, 65.0, and 64.0%, respectively. The glass transition temperatures (Tgs) were 118.1, 115.8, and 111.5 °C for the respective syndiotactic‐rich PMMA3, PMMA4, and PMMA6 and 111.5, 109.7, and 107.6 °C for the respective stereoblock ones. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
This study examined the use of a new tetrafunctional peroxide initiator in the bulk free‐radical polymerization of methyl methacrylate. The objective was to investigate the effect of using a multifunctional initiator through an examination of the rates of polymerization and the polymer properties. The molecular weights and radii of gyration were obtained with a size exclusion chromatograph equipped with an online multi‐angle laser light scattering detector. The performance of the tetrafunctional initiator was compared to that of a monofunctional counterpart [tert‐butylperoxy 2‐ethylhexyl carbonate (TBEC)]. The results showed that the new tetrafunctional peroxide initiator produced a faster rate of polymerization than TBEC at an equivalent concentration but also generated a polymer of a lower molecular weight. This trend was the opposite of what was observed in a previous study with styrene. When TBEC was used at a concentration four times that of the new tetrafunctional peroxide initiator, both produced equal rates of polymerization and similar molecular weights. The degree of branching was also investigated with radius‐of‐gyration plots. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5647–5661, 2004  相似文献   

16.
The six‐armed polystyrenes and poly(methyl methacrylate)s with a triphenylene core showed different self‐assembling patterns, isolated cylinders for polySt on mica and highly ordered cylindrical pores for polyMMA on a silicon wafer. With a decrease of polymer concentration in tetrahydrofuran (THF), the size and height of cylinders decreased for polySt, but for polyMMA, the size and depth of the cylindrical pores increased. Slow evaporation of the solvent and a low molecular weight favored the formation of regular patterns.

AFM images of self‐assembling patterns of polySt 1a on mica (A) and of polyMMA 2a on silicon wafer (B).  相似文献   


17.
Multi‐walled carbon nanotubes (MWNT) purified by acidic solution were processed with PMMA via an in‐situ polymerization. Experimental evidences indicate the role of radical initiator (AIBN) and MWNT, showing increases of polymerization rate and MWNT diameter. Induced radicals on the MWNT by AIBN were found to trigger the grafting of PMMA. Moreover, the solvent cast film showed a better nanoscopic dispersion of MWNT and possibilities of CNT composites in engineering applications.

Fractured surface of multi‐walled carbon nanotube composite with PMMA prepared by in‐situ bulk polymerization.  相似文献   


18.
Four linear and four star equimolar terpolymers based on non‐ionic hydrophilic methoxy hexa(ethylene glycol) methacrylate, ionizable hydrophilic 2‐(dimethylamino)ethyl methacrylate and neutral hydrophobic methyl methacrylate were synthesized using group transfer polymerization and investigated in aqueous dilute solutions. It was found that the (ABC)n multi‐arm star terpolymers formed unimolecular micelles comprising three centrosymmetric compartments. The position of each compartment could be determined by the block sequence (ABC, ACB or BAC) at will. On the other hand, the ABC linear counterparts formed loose associates with very low aggregation numbers. It was shown that the polymer architecture (linear versus star) greatly affected the micellization phenomena of the terpolymers in selective media.

  相似文献   


19.
We have developed a novel strategy for the preparation of ion‐bonded supramolecular star polymers by RAFT polymerization. An ion‐bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert‐butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by 1H NMR and GPC. The results show that the polymerization possesses the character of living free‐radical polymerization and the ion‐bonded supramolecular star polymers PSt, PtBA, and PSt‐b‐PtBA, with six well‐defined arms, were successfully synthesized.

  相似文献   


20.
Supramolecular poly(vinyl acetate) PVAc 3‐arms stars were successfully generated by Reversible Addition–Fragmentation chain Transfer (RAFT)‐polymerized chains bearing hydrogen‐bonding heterocomplementary associating units. Chain Transfer Agents (CTA) bearing thymine‐ and diaminopyridine‐based units were first synthesized and proved to mediate efficiently the polymerization of VAc. The binding ability of the chains in solution was then demonstrated by 1H NMR and GPC measurements, proving the formation of the supramolecular stars.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号