首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate here, for the first time, the capability of a diffraction-based sensor to detect enzyme activity and provide a simple measure of enzyme kinetics. Patterned samples of mouse IgG were exposed to the enzyme trypsin and the progress of enzymatic degradation of IgG was followed by measuring the decrease in diffraction signal intensity as a function of time. The diffraction signal intensity decreased exponentially as a function of time over a range of trypsin concentrations from 2–100 g mL–1. Atomic-force microscope images of the samples before and after exposure to trypsin show that the thickness of patterned protein is greatly reduced by the enzyme action, providing useful insight into the mechanism of signal change for the diffraction sensor.  相似文献   

2.
Jain T  Papas A  Jadhav A  McBride R  Saez E 《Lab on a chip》2012,12(5):939-947
Gene silencing using RNA interference (RNAi) has become a prominent biological tool for gene annotation, pathway analysis, and target discovery in mammalian cells. High-throughput screens conducted using whole-genome siRNA libraries have uncovered rich sets of new genes involved in a variety of biological processes and cellular models of disease. However, high-throughput RNAi screening is not yet a mainstream tool in life science research because current screening platforms are expensive and onerous. Miniaturizing the RNAi screening platform to reduce cost and increase throughput will enable its widespread use and harness its potential for rapid genome annotation. With this aim, we have combined semi-conductor microfabrication and nanolitre dispensing techniques to develop miniaturized electroporation-ready microwell arrays loaded with siRNA molecules in which multiplexed gene knockdown can be achieved. Arrays of microwells are created using high-aspect ratio biocompatible photoresists on optically transparent and conductive Indium-Tin Oxide (ITO) substrates with integrated micro-electrodes to enable in situ electroporation. Non-contact inkjet microarraying allows precise dispensing of nanolitre volumes into the microwell structures. We have achieved parallel electroporation of multiple mammalian cells cultured in these microwell arrays and observed efficient knockdown of genes with surface-bound, printed siRNAs. Further integration of microfabrication and non-contact nanolitre dispensing techniques described here may enable single-substrate whole-genome siRNA screening in mammalian cells.  相似文献   

3.
Despite recent progress, our understanding of enzymes remains limited: the prediction of the changes that should be introduced to alter their properties or catalytic activities in an expected direction remains difficult. An alternative to rational design is selection of mutants endowed with the anticipated properties from a large collection of possible solutions generated by random mutagenesis. We describe here a new technique of in vitro selection of genes on the basis of the catalytic activity of the encoded enzymes. The gene coding for the enzyme to be engineered is cloned into the genome of a filamentous phage, whereas the enzyme itself is displayed on its surface, creating a phage enzyme. A bifunctional organic label containing a suicide inhibitor of the enzyme and a ligand with high affinity for an immobilized receptor are constructed. On incubation of a mixture of phage enzymes, those phages showing an activity on the inhibitor under the conditions of the experiment are labeled. These phages can be recovered by affinity chromatography. The design of the label and the factors controlling the selectivity of the selection are analyzed. The advantages of the technique and its scope in terms of the enzymes that can be engineered are discussed.  相似文献   

4.
Metal nanoframes, especially ultrathin ones, with excellent plasmonic properties are synthetically interesting and highly attractive. Herein we report on the synthesis of Au nanobipyramid-embedded ultrathin metal nanoframes with one of the plasmon modes very similar to that of the Au nanobipyramids. The synthesis is mediated by silver coating on Au nanobipyramids. The excellent plasmonic properties of the Au nanobipyramid-embedded ultrathin metal nanoframes are ascribed to the little influence of the ultrathin metal nanoframes on the Au nanobipyramids, as verified by electrodynamic simulations. The increase in the amount of the added metal atoms changes the nanostructure from the nanoframe to a nanocage shape. The method has also been successfully applied to (Au nanobipyramid)@Ag nanorods with different lengths and Au nanobipyramids with different longitudinal dipolar plasmon wavelengths, suggesting the generality of our approach. We have further shown that the Au nanobipyramid-embedded ultrathin metal nanoframes possess an excellent surface-enhanced Raman scattering and outstanding in situ reaction probing performance. Our study opens up a route for the construction of plasmonic ultrathin metal nanoframes based on Au nanobipyramids for plasmon-enabled applications.

Ultrathin gold, palladium and platinum nanoframes are synthesized for monitoring reactions. Each nanoframe contains a gold nanobipyramid at its center.  相似文献   

5.
A contact lens (CL) biosensor for in situ monitoring of tear glucose was fabricated and tested. Biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer and polydimethyl siloxane (PDMS) were employed as the biosensor material. The biosensor consists of a flexible Pt working electrode and a Ag/AgCl reference/counter electrode, which were formed by micro-electro-mechanical systems (MEMS) technique. The electrode at the sensing region was modified with glucose oxidase (GOD). The CL biosensor showed a good relationship between the output current and glucose concentration in a range of 0.03-5.0 mM, with a correlation coefficient of 0.999. The calibration range covered the reported tear glucose concentrations in normal and diabetic patients. Also, the CL biosensor was applied to a rabbit for the purpose of tear glucose monitoring. The basal tear glucose was estimated to 0.11 mM. Also, the change of tear glucose induced by the change of blood sugar level was assessed by the oral glucose tolerance test. As a result, tear glucose level increased with a delay of 10 min from blood sugar level. The result showed that the CL biosensor is expected to provide further detailed information about the relationship between dynamics of blood glucose and tear glucose.  相似文献   

6.
7.
《Tetrahedron: Asymmetry》1998,9(21):3737-3739
Enantiomerically pure 4-deoxy-d-fructose has been prepared and characterised in a protected form, acidic hydrolysis of which led to an aqueous solution of 4-deoxy-d-fructose. Activities of this compound with enzymes of the glycolysis pathway involved in glucose metabolism make possible access to 4-deoxy-d-fructose-6-phosphate, 4-deoxy-d-glucose-6-phosphate and 4-deoxy-d-gluconate-6-phosphate.  相似文献   

8.
电化学生物传感器在环境监测中的应用及发展前景   总被引:1,自引:0,他引:1  
简要介绍了电化学生物传感器的工作原理,重点论述了电化学生物传感器在环境监测领域的应用及其研究进展,主要包括水环境污染物和大气污染物的监测,以及农药残留的监测等.同时,对电化学生物传感器的发展方向及前景进行了展望.  相似文献   

9.
Manganese complexes of the type [TpMn(X)] and [TpMn(μ-N3)(μ-X)MnTp] (X = acetylacetonate, acac; picolinate, pic and Tp = TpPh,Me for acac, Tp = Tpipr2 for pic complexes) having TpPh,Me (hydrotris(3-phenyl,5-methyl-pyrazol-1-yl)borate)/Tpipr2 (hydrotris(3,5-diisopropyl-pyrazol-1-yl)borate) as a supporting ligand have been synthesized and structurally characterized. IR and X-ray structures suggest that complexes 7 and 9 are binuclear with azido and bidentate ligands (acac/pic) bridging, whereas complexes 6 and 8 are mononuclear with a 5-coordinated metal center. In complex 9 the picolinate is coordinated as tridentate in a η3-fashion, but in complex 7 acac behaves as bidentate, whereas azide is coordinated in a bridging bidentate μ-1,3-manner in both 7 and 9. Since the coordination geometry of the manganese ions in complex 9 is very similar to the active site structure of manganese-containing pseudocatalase, we have tested the catalytic activity of the same towards the disproportionation of hydrogen peroxide. The catalytic results indicated that complex 9 has reasonably good catalase activity and may be suitable, structurally as well as functionally, as a model for the pseudocatalase enzyme.  相似文献   

10.
《中国化学快报》2020,31(9):2437-2441
Alloy and small size nanostructures are favorable to catalytical performance, but not to surface-enhanced Raman spectroscopy (SERS) applications. Integrating SERS and catalytic activity into the nanocrystals with both alloy and small size structures is of great interest in fabrication of SERS platform to in situ monitor catalytical reaction. Herein, we report a facile method to synthesize Au@AgPd trimetallic nanoflowers (Au@AgPd NFs) with both SERS and catalytic activities, through simultaneous selective growth of Ag and Pd on Au core to form highly-branched alloy shell. These nanocrystals have the properties of small sizes, defects abundance, and highly-dispersed alloy shell which offer superior catalytic activity, while the merits of monodisperse, excellent stability, and highly-branched shell and core/alloy-shell structure promise the enhanced SERS activity. We further studied their growth mechanisms, and found that the ratio of Ag to Pd, sizes of Au core, and surfactant cetyltrimethylammonium bromide together determine this special structure. Using this as-synthesized nanocrystals, a monolayer bifunctional platform with both SERS and catalytical activity was fabricated through self-assembly at air/water interface, and applied to in situ SERS monitoring the reaction process of Pd-catalyzed hydrogenation of 4-nitrothiophenol to 4-aminothiophenol.  相似文献   

11.
Silver microflower arrays constructed by upright nanoplates and attached nanoparticles were fabricated inside a microfluidic channel, thus a robust catalytic microreactor for allowing in situ SERS monitoring was proposed. On-chip catalytic reduction shows that the silver microflowers have high catalytic activity and SERS enhancement.  相似文献   

12.
Here we describe the application of a recently developed high-resolution microcantilever biosensor resonating at the air-liquid interface for the continuous detection of antigen-antibody and enzyme-substrate interactions. The cantilever at the air-liquid interface demonstrated 50% higher quality factor and a 5.7-fold increase in signal-to-noise-ratio (SNR) compared with one immersed in the purified water. First, a label-free detection of a low molecular weight protein (insulin, 5.8 kDa) in physiological concentration was demonstrated. The liquid facing side of the cantilever was functionalized by coating its surface with insulin antibodies, while the opposite side was exposed to air. The meniscus membrane at the micro-slit around the cantilever sustained the liquid in the microchannel. After optimizing the process of surface functionalization, the resonance frequency shift was successfully measured for insulin solutions of 0.4, 2.0, and 6.3 ng ml(-1). To demonstrate additional application of the device for monitoring enzymatic protein degradation, the liquid facing microcantilever surface was coated with human recombinant SOD1 (superoxide dismutase 1) and exposed to various concentrations of proteinase K solution, and the kinetics of the SOD1 digestion was continuously monitored. The results showed that it is a suitable tool for sensitive protein detection and analysis.  相似文献   

13.
Urakawa A  Trachsel F  von Rohr PR  Baiker A 《The Analyst》2008,133(10):1352-1354
Raman spectroscopy on a chip based Si/glass microreactor allows fast and simultaneous analysis of concentration profiles and phase behaviour of a heterogeneously catalyzed reaction at high pressure.  相似文献   

14.
Knowledge of the structure of catalysts is essential to understand their behavior, which further facilitates development of an active, selective, and stable catalyst. Determining the structure of a functioning catalyst is essential in this regard. The structure of a catalyst is prone to change during the catalytic process and needs to be determined in its working conditions. In this tutorial review, we have summarized studies done at synchrotron radiation facilities that illustrate the capability to determine catalyst structure using X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES). These studies aim at facilitating the determination of the dynamic structure-performance relationships during a catalytic process.  相似文献   

15.
16.
The quantum chemical model for predicting the optimal molecular environment exerting the highest catalytic activity on transition complex has been proposed. It was applied for the CO2 hydration reaction at the nonempirical LCAO MO SCF level. The possible use of the resulting optimal charge distribution of environment for design of new synthetic catalysts and explanation of the carbonic anhydrase action was discussed. In addition, a simplified approach based on the difference electrostatic molecular potentials evaluated within the many center multipole expansion is presented. It may enable us to perform corresponding estimations even by means of a programmable calculator.  相似文献   

17.
The study of peptide-antibody interactions has many applications in biology and medicine. Synthetic peptides corresponding to single protein epitopes are used instead of intact proteins as reagents for the diagnosis of viral and autoimmune diseases. Furthermore, antibodies raised against peptides are useful reagents for isolating and characterizing gene products. In this review, methods for analysing the molecular basis of peptide-antibody interactions are described, such as amino acid replacement studies, X-ray crystallography of peptide-antibody complexes and biosensor technology based on surface plasmon resonance. The importance of peptide conformation in antibody recognition is discussed, and the antigenic reactivity of epitopes in synthetic peptides and in cognate, intact proteins is compared.  相似文献   

18.
The reactions catalysed by the various cytochrome P-450 enzymes are reviewed with respect to the analysis of products by high-performance liquid chromatography (HPLC). Especially biotransformation reactions of purified cytochrome P-450 enzymes in a reconstituted system and in microsomes mainly of rat liver origin are considered. Emphasis is put on the specificity of product formation due to the individual isozymes of cytochrome P-450. It is shown that the presence of eight cytochrome P-450 isozymes can be monitored and determined by specific product formation after HPLC analysis, which is an important parameter in toxicological studies.  相似文献   

19.
The adsorption of multiple protein layers on biotinylated organic surfaces has been characterized using surface plasmon resonance (SPR) and atomic force microscopy (AFM). Diffusion-limited loading of the biotinylated self-assembled monolayers (SAMs) ensures a precise control of the streptavidin surface density. For the subsequent interaction with biotinylated peroxidase, SPR data hint at a streptavidin density dependent orientation during peroxidase adsorption. Microcontact printed well-defined two-dimensional patterned surfaces of biotinylated organothiols and protein-resistant OEG-thiols allow an in-situ differentiation of specific and nonspecific adsorption (e.g., mono- vs multilayer adsorption). Additionally, the very important issue of biological activity of surface-bound enzymes is addressed by comparing the enzyme activities in solution with that for surface-bound species.  相似文献   

20.
The results communicated in this paper show that rapid and reliable information about the activity of immobilized enzymes follows from calorimetric measurements. The study was done using spherical and plain carriers as well as different enzymes (urease, glucose-oxidase, invertase). The enzyme thermistor developed by Danielsson et al. was used as a measuring system. This measuring system was applied to investigate the activity of enzyme carrier complexes produced by the sol-gel technique. The influence of processing parameters could be pointed out at complexes of different forms (xerogel, gel on ceramic carrier, thin gel layers on foil, etc.). With the described calorimetric method, a fast and reliable technique for comparative determination of the activity of immobilized enzymes is available. A special advantage of this method is its variability in carriers and the generally applicable thermal measuring principle. Therefore, it seems useful for the development of new immobilization techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号