首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ablation behavior of copper alloy and aluminium irradiated in air by 1.06 m, 10 ns pulsed laser with power density of 6.4×109W/cm2 was studied using scanning electron microscopy (SEM), MCS-RBS and X-ray microanalysis. Evidence of bulk vaporization via bubble formation was observed for the copper alloy under the laser irradiation. Silver-enrichment microregions were found in the ablation crater created by the laser shots on the copper alloy sample. Material removal rates of these materials were determined by crater shape-profile measurement. Using self-similar solutions of the gas-dynamic equations, gas-dynamic parameters of the vaporization waves are obtained. These parameters are used to calculate material removal rates and impulse coupling coefficients of these materials under the pulsed laser irradiation. The calculated mass removal rates and the coupling coefficients are compared with the corresponding experimentally determined values. The surface kinetic energy of the irradiated area on the Al sample is estimated. Possible mechanisms for laser ablation of the materials under study are discussed.  相似文献   

2.
Nanostructure formation on bulk noble metals (copper, gold and silver) by a femtosecond laser was studied aiming at the production of low-reflectivity surfaces. The target surface was irradiated with the beam of a 775 nm wavelength and 150 fs pulse duration Ti:sapphire laser. The fluence was in the 16–2000 mJ/cm2 range, while the average pulse number was varied between 10 and 1000 depending on the scanning speed of the sample stage. The reflectivity of the treated surfaces was measured with a visible–near-infrared microspectrometer in the 450–800 nm range, while the morphology was studied with a scanning electron microscope. A strong correlation was found between the decreasing reflectivity and the nanostructure formation on the irradiated surface; however, the morphology of silver significantly differed from those of copper and gold. For the two latter metals a dense coral-like structure was found probably as a result of cluster condensation in the ablation plume followed by diffusion-limited aggregation. In the case of silver the surface was covered by nanodroplets, which formation was probably influenced by the ‘spitting’ caused by ambient oxygen absorption in the molten silver followed by its fast release during the resolidification.  相似文献   

3.
This paper presents the surface microstructure of Ti and Ti6Al4V alloy irradiated with a high output energy XeCl ( = 308 nm) excimer laser. The treatments are carried out on both materials at two beam fluences and the effects of single- and multiple-pulse irradiation are compared. The results of the scanning electron microscopy and of the X-ray diffraction techniques suggest the possible influence of both time-behaviour and energy fluence of the laser pulse on the relative weight of the ablation rate and of the reaction product deposition rate at the sample surface.  相似文献   

4.
Experiments on the ablation of polymethylmethacrylate (PMMA) with 300 fs uv excimer laser pulses at 248 nm are reported for the first time. With these ultrashort pulses, ablation can be done at fluences up to five times lower than the threshold fluence for 16 ns ablation of PMMA, and the surface morphology is improved, also for several other materials. A model for ablation is proposed, assuming a non-constant absorption coefficient eff depending on the degree of incubation of the irradiated material and the intensity of the incoming excimer laser pulse. The agreement between our model and our experimental observations is excellent for 16 ns excimer laser pulses, also predicting perfectly the shape of a pulse transmitted through a thin PMMA sample under high fluence irradiation. Qualitative agreement for 300 fs excimer laser pulses is obtained so far.  相似文献   

5.
石墨-二氧化硅作为无机添加材料,广泛应用于各类航空航天器烧蚀涂层领域,其在高温下具有较高的反应吸热焓,在高能激光烧蚀领域具有良好的应用前景。目前,关于石墨-二氧化硅的高能激光烧蚀研究较少,尤其在高能激光烧蚀中的反应时间和烧蚀阈值难以确定。针对此问题,利用近红外探测器对激光辐照样品表面的散射光进行实时探测,并对其散射光曲线进行微分拟合处理。基于此散射光信号,结合样品烧蚀后的形态结构分析,研究了石墨-二氧化硅在不同激光功率密度下的反应时间阈值。研究结果表明:在激光输出功率密度为500 W/cm~2持续辐照10 s时,散射光拟合曲线持续升高无突变,表明未发生明显的烧蚀;当激光功率密度升高至1 000~1 500 W/cm~2时,散射光微分拟合曲线出现明显转折点,对应的反应时间阈值分别为1.5 s和0.8 s。  相似文献   

6.
Laser-induced morphological changes of poly(methyl methacrylate), poly(N-vinylcarbazole), and gelatin films doped with porphyrins have been studied by etch depth measurement and scanning electron microscopy. An irreversible swelling of the irradiated surface was observed for all films in the case of low laser fluence. The swelling was replaced by ablation when the fluence was increased. The etch depth depends on the irradiation fluence and the dye concentration in the polymer. The observation of the irradiated surfaces suggests that the thermal effect is predominant both for swelling and ablation. The surface temperature at which swelling or ablation is initiated was estimated, assuming that these morphological changes take place at a certain temperature for any dye concentration in each polymer film.  相似文献   

7.
Picosecond laser (10.4 ps, 1064 nm) ablation of the nickel-based superalloy C263 is investigated at different pulse repetition rates (5, 10, 20, and 50 kHz). The two ablation regimes corresponding to ablation dominated by the optical penetration depth at low fluences and of the electron thermal diffusion length at high fluences are clearly identified from the change of the surface morphology of single pulse ablated craters (dimples) with fluence. The two corresponding thresholds were measured as F th(D1)1=0.68±0.02 J/cm2 and F th(D2)1=2.64±0.27 J/cm2 from data of the crater diameters D 1,2 versus peak fluence. The surface morphology of macroscopic areas processed with a scanning laser beam at different fluences is characterised by ripples at low fluences. As the fluence increases, randomly distributed areas among the ripples are formed which appear featureless due to melting and joining of the ripples while at high fluences the whole irradiated surface becomes grainy due to melting, splashing of the melt and subsequent resolidification. The throughput of ablation becomes maximal when machining at high pulse repetition rates and with a relatively low fluence, while at the same time the surface roughness is kept low.  相似文献   

8.
建立了观测和记录不同激光入射角度烧蚀6061铝合金靶材等离子体反喷羽流特性的实验装置,对实验结果图像进行了处理,并对处理结果进行了数值拟合。拟合结果表明,激光辐照靶材后100ns内,等离子体反喷羽流大致分布区域为靶面外5mm×5mm。激光以不同角度入射时,等离子体反喷速度相对于靶面法线方向大致呈轴对称分布。当激光相对靶面法线方向小角度范围内入射时,激光烧蚀引起的冲量主要沿靶面法线方向,反喷羽流沿靶面法方向的速度为20~40km·s-1。激光斜入射时,反喷羽流沿靶面法线方向的速度要大于激光垂直入射的情况。高斯函数可以很好地描述等离子体反喷羽流速度分布。  相似文献   

9.
Laser–ablation techniques have been widely applied for removing material from a solid surface using a laser–beam irradiating apparatus. This paper presents a surface–texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser–scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser–textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.  相似文献   

10.
We investigate the TEA CO2 laser ablation of films of poly(methyl methacrylate), PMMA, with average MW 2.5, 120 and 996 kDa doped with photosensitive compounds iodo-naphthalene (NapI) and iodo-phenanthrene (PhenI) by examining the induced morphological and physicochemical modifications. The films casted on CaF2 substrates were irradiated with a pulsed CO2 laser (10P(20) line at 10.59 μm) in resonance with vibrational modes of PMMA and of the dopants at fluences up to 6 J/cm2. Laser induced fluorescence probing of photoproducts in a pump and probe configuration is carried out at 266 nm. Formation of naphthalene (NapH) and phenanthrene (PhenH) is observed in NapI and PhenI doped PMMA, respectively, with relatively higher yields in high MW polymer, in similarity with results obtained previously upon irradiation in the UV at 248 nm. Above threshold, formation of photoproducts is nearly complete after 200 ms. As established via optical microscopy, bubbles are formed in the irradiated areas with sizes that depend on polymer MW and filaments are observed to be ejected out of the irradiated volume in the samples made with high MW polymer. The implications of these results for the mechanisms of polymer IR laser ablation are discussed and compared with UV range studies.  相似文献   

11.
3 N4 has been investigated. The ablation threshold in air, Φth, is around 0.3±0.1 J/cm2 with ArF- and 0.9±0.2 J/cm2 with KrF-laser radiation. With fluences Φth<Φ<4 J/cm2 the irradiated surface is either very flat or it exhibits a cone-type structure, depending on the number of laser pulses employed. With fluences of 5 to 10 J/cm2, the sample surface becomes very smooth, much smoother than the original mechanically polished surface. Pores, scratches, and cracks observed on the non-irradiated surface are absent within the illuminated area. In this regime, the ablation rates are typically 0.1 to 0.2 μm/pulse. Received: 10 April 1997/Accepted: 11 April 1997  相似文献   

12.
The processes of the ArF-excimer-laser ablation of PolyMethylMethAcrylate (PMMA) has been investigated. We studied the surface reflection of the polymer sample during UV photoablation. It was observed that a dark spot appeared in the reflected probe nitrogen laser beam (the reflection decreased below 4%) with about 5 ns delay after the onset of the ablating excimer pulse, while the transmitted probe laser intensity was increased to about 104%.A fast stroboscopic photographic arrangement was built for investigation of the ejection. A protuberance developed on the irradiated surface at about 100 ns delay. This expanded with about 600 m/s average velocity until 4 s, then contracted slowly, and finally at 16–18 s delay the ejection started. We also examined the process of the UV photoablation of PMMA in the vacuum chamber. In this case, the protuberance also appeared, but it left the surface nearly in one block at 3 s delay.Using a double-flash exposure photographic arrangement based on a dye laser, the propagation velocity of the shock waves developed in the air above the surface of the PMMA sample as a function of time was measured, and good agreement with shock wave theory was found. The pressure in the shock front can be as high as 1939 bar.  相似文献   

13.
Ultra-short pulsed laser removal of thin biofilm contamination on different substrates has been conducted via the use of plasma-mediated ablation. The biofilms were formed using sheep whole blood. The ablation was generated using a 1.2 ps ultra-short pulsed laser with wavelength centered at 1552 nm. The blood contamination was transformed into plasma and collected with a vacuum system. The single line ablation features have been measured. The ablation thresholds of blood contamination and bare substrates were determined. It is found that the ablation threshold of the blood contamination is lower than those of the beneath substrates including the glass slide, PDMS, and human dermal tissues. The ablation effects of different laser parameters (pulse overlap rate and pulse energy) were studied and ablation efficiency was measured. Proper ablation parameters were found to efficiently remove contamination with maximum efficiency and without damage to the substrate surface for the current laser system. Complete removal of blood contaminant from the glass substrate surface and freeze-dried dermis tissue surface was demonstrated by the USP laser ablation with repeated area scanning. No obvious thermal damage was found in the decontaminated glass and tissue samples.  相似文献   

14.
A mask projection system working with KrF laser radiation is described. This system produces microscopic laser beams able to pattern gratings on the surface of various materials in the micrometer range by direct etching. Models have been developed to simulate the beam intensity profile on the sample. Various polymers have been irradiated, and their experimental profiles are compared with theoretical ones. Different ablation behaviors have been evidenced. Interesting consequences of thermal effects at this submicron scale are reported.  相似文献   

15.
Single-shot laser ablation of polyimide has been investigated with UV-Ar+-laser radiation ( = 270-315 nm) for pulse lengths between 140 ns and 5 µs. The irradiated polymer surface was studied with respect to its morphology and ablated depth by means of atomic force microscopy. The dependence of the ablation threshold on laser pulse-length and intensity can be tentatively interpreted on the basis of a thermal process and a (thermal or non-thermal) mechanism which diminishes the activation energy for the desorption of species from the surface.  相似文献   

16.
Using femtosecond laser pulses (150 fs duration at λ=400 nm) for ablation experiments on glass samples with and without enclosed silver nanoparticles, characteristic sub-micrometer surface topologies are observed on the flat bottom of the ablation craters produced. The structures show increasing order towards periodic ripple-like features with an increasing number of successive pulses applied. Depending on sample and experimental conditions, the spatial periodicity varies between 340 nm and 1900 nm, despite a constant laser wavelength and incidence angle. An analysis based on electron and atomic force microscopy of the structures indicates that the formation of the ripples in this work is due to instabilities and self-organization of the surface relaxation after ablation. PACS 81.16.Rf; 42.70.-a  相似文献   

17.
Nanosecond pulsed laser ablation of silicon in liquids   总被引:2,自引:0,他引:2  
Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface’s ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent.  相似文献   

18.
We have analyzed the ablation depth yield of fused silica irradiated with shaped pulse trains with a separation of 500 fs and increasing or decreasing intensity envelopes. This temporal separation value is extracted from previous studies on ablation dynamics upon irradiation with transform-limited 100 fs laser pulses. The use of decreasing intensity pulse trains leads to a strong increase of the induced ablation depth when compared to the behavior, at the same pulse fluence, of intensity increasing pulse trains. In addition, we have studied the material response under stretched (500 fs, FWHM) and transform-limited (100 fs, FWHM) pulses, for which avalanche or multiphoton ionization respectively dominates the carrier generation process. The comparison of the corresponding evolution of the ablated depth vs. fluence suggests that the use of pulse trains with decreasing intensity at high fluences should lead to enhanced single exposure ablation depths, beyond the limits corresponding to MPI- or AI-alone dominated processes.  相似文献   

19.
According to a previously developed pure photochemical model of VUV laser ablation of polymers, the velocity of ablation front is proportional to surface intensity, and a stationary value of the surface temperature does not depend on laser intensity. Previous estimations show, however, that this stationary surface temperature could be too high to be relevant to the photochemical mechanism. This raises a question of whether the stationary value of the surface temperature can be achieved for a given time shape of light intensity coming to the surface irradiated by a laser pulse of high enough fluence. The intensity time shape is connected not only with the time shape of a laser pulse but also with screening of laser radiation by the plume. This problem is discussed in the present communication. Specifically, it is shown that with a hyperbolic surface intensity time shape, heat diffusion can successfully compete with laser heating decreasing maximum surface temperature compared to its stationary value. The hyperbolic surface laser intensity corresponds to a rectangular laser pulse screened by plume during the photochemical ablation. This allows one to estimate that the photochemical model for a multiple-pulse VUV laser ablation with a high plume extinction coefficient is self-consistent even for a high value of stationary temperature and for high enough laser fluences. PACS 42.62.-b; 44.05.+e; 82.53.-k  相似文献   

20.
Acceleration and expulsion of a laser-induced melt layer in laser ablation of polymers is studied based on a combination of a quantitative theoretical modeling of ablation pressure and viscous melt flow with an experimental technique of a precise nanoscale measurement of the resulting surface profile. For two particular examples corresponding to so-called stationary and non-stationary liquid layer flows the following results are obtained: (i) the kinematic viscosity of the laser-induced melt layer on the surface of poly(ethylene terephthalate) at extreme conditions of KrF laser ablation is found for the first time and (ii) a new form of material removal in laser ablation is explained – expulsion of long (up to 1 mm) nanofibers with a radius of about 150–200 nm when a poly(methyl methacrylate) target is irradiated with a single pulse of a KrF excimer laser. PACS 42.62.Cf; 61.80.Ba; 83.80.Ab  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号