首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.  相似文献   

2.
Using alpha-secondary kinetic isotope effects (2 degrees KIEs) in conjunction with primary (1 degrees ) KIEs, we have investigated the mechanism of environmentally coupled hydrogen tunneling in the reductive half-reactions of two homologous flavoenzymes, morphinone reductase (MR) and pentaerythritol tetranitrate reductase (PETNR). We find exalted 2 degrees KIEs (1.17-1.18) for both enzymes, consistent with hydrogen tunneling. These 2 degrees KIEs, unlike 1 degrees KIEs, are independent of promoting motions-a nonequilibrium pre-organization of cofactor and active site residues that is required to bring the reactants into a "tunneling-ready" configuration. That these 2 degrees KIEs are identical suggests the geometries of the "tunneling-ready" configurations in both enzymes are indistinguishable, despite the fact that MR, but not PETNR, has a clearly temperature-dependent 1 degrees KIE. The work emphasizes the benefit of combining studies of 1 degrees and 2 degrees KIEs to report on pre-organization and local geometries within the context of contemporary environmentally coupled frameworks for H-tunneling.  相似文献   

3.
A fully microscopical simulation of the rate-limiting hydrogen abstraction catalyzed by soybean lipoxygenase-1 (SLO-1) has been carried out. This enzyme exhibits the largest, and weakly temperature dependent, experimental H/D kinetic isotope effect (KIE) reported for a biological system. The theoretical model used here includes the complete enzyme with a solvation shell of water molecules, the Fe(III)-OH- cofactor, and the linoleic acid substrate. We have used a hybrid QM(PM3/d-SRP)/MM method to describe the potential energy surface of the whole system, and the ensemble-averaged variational transition-state theory with multidimensional tunneling (EA-VTST/MT) to calculate the rate constant and the primary KIE. The computational results show that the compression of the wild-type active site enzyme results in the huge contribution of tunneling (99%) to the rate of the hydrogen abstraction. Importantly, the active site becomes more flexible in the Ile553Ala mutant reactant complex simulation (for which a markedly temperature dependent KIE has been experimentally determined), thus justifying the proposed key role of the gating promoting mode in the reaction catalyzed by SLO-1. Finally, the results indicate that the calculated KIE for the wild-type enzyme has an important dependence on the barrier width.  相似文献   

4.
Temperature and pressure dependences of rate constants for solid phase tunneling reactions are analytically considered within the framework of modified theory of radiationless transitions, taking into account the intermolecular and soft intramolecular promotive vibrations of reagents. This treatment allows us to describe theoretically the process of atomic tunneling and the effect of temperature on the potential barrier and reorganization of the reagents. The influence of external pressure appears in our treatment as a static reduction of widths and heights of the potential barrier with hydrostatic compression of the matrix, and also as an increase of frequencies of promotive vibrational modes owing to anharmonicity. The theoretical results are used to interpret experimental data concerning the effect of temperature and pressure on the hydrogen-atom tunneling in the fluorene-acridine reaction system. It has been shown that by taking into account the contributions from reorganization of the reagents, which statically reduce the tunneling barrier and are related to four types of promotive vibrations (translational, librational, and two low-frequency intramolecular modes at 95 and 238 cm(-1)), one can reproduce the experimental data available in the literature. The parameters of the reaction system required for this analysis are calculated from two-dimensional potential-energy surfaces generated at the DFT-B3LYP/6-31G* level.  相似文献   

5.
In recent years, the temperature dependence of primary kinetic isotope effects (KIE) has been used as indicator for the physical nature of enzyme-catalyzed H-transfer reactions. An interactive study where experimental data and calculations examine the same chemical transformation is a critical means to interpret more properly temperature dependence of KIEs. Here, the rate-limiting step of the thymidylate synthase-catalyzed reaction has been studied by means of hybrid quantum mechanics/molecular mechanics (QM/MM) simulations in the theoretical framework of the ensemble-averaged variational transition-state theory with multidimensional tunneling (EA-VTST/MT) combined with Grote-Hynes theory. The KIEs were calculated across the same temperature range examined experimentally, revealing a temperature independent behavior, in agreement with experimental findings. The calculations show that the H-transfer proceeds with ~91% by tunneling in the case of protium and ~80% when the transferred protium is replaced by tritium. Dynamic recrossing coefficients are almost invariant with temperature and in all cases far from unity, showing significant coupling between protein motions and the reaction coordinate. In particular, the relative movement of a conserved arginine (Arg166 in Escherichia coli ) promotes the departure of a conserved cysteine (Cys146 in E. coli ) from the dUMP by polarizing the thioether bond thus facilitating this bond breaking that takes place concomitantly with the hydride transfer. These promoting vibrations of the enzyme, which represent some of the dimensions of the real reaction coordinate, would limit the search through configurational space to efficiently find those decreasing both barrier height and width, thereby enhancing the probability of H-transfer by either tunneling (through barrier) or classical (over-the-barrier) mechanisms. In other words, the thermal fluctuations that are coupled to the reaction coordinate, together with transition-state geometries and tunneling, are the same in different bath temperatures (within the limited experimental range examined). All these terms contribute to the observed temperature independent KIEs in thymidylate synthase.  相似文献   

6.
The effects of substituents on the temperature dependences of kinetic isotope effect (KIE) for the reactions of the hydride transfer from the substituted 5-methyl-6-phenyl-5,6-dihydrophenanthridine (G-PDH) to thioxanthylium (TX(+)) in acetonitrile were examined, and the results show that the temperature dependences of KIE for the hydride transfer reactions can be converted by adjusting the nature of the substituents in the molecule of the hydride donor. In general, electron-withdrawing groups can make the KIE to have normal temperature dependence, but electron-donating groups can make the KIE to have abnormal temperature dependence. Thermodynamic analysis on the possible pathways of the hydride transfer from G-PDH to TX(+) in acetonitrile suggests that the transfers of the hydride anion in the reactions are all carried out by the concerted one-step mechanism whether the substituent is an electron-withdrawing group or an electron-donating group. But the examination of Hammett-type free energy analysis on the hydride transfer reactions supports that the concerted one-step hydride transfer is not due to an elementary chemical reaction. The experimental values of KIE at different temperatures for the hydride transfer reactions were modeled by using a kinetic equation formed according to a multistage mechanism of the hydride transfer including a returnable charge-transfer complex as the reaction intermediate; the real mechanism of the hydride transfer and the root that why the temperature dependences of KIE can be converted as the nature of the substituents are changed were discovered.  相似文献   

7.
We discuss how the excitation of high-frequency modes in adsorbed molecules may result in motion (e.g., rotation, translation, or dissociation) of the molecules. Our study is based on rate equations and considers one- and two-vibrational excitation processes, corresponding to linear and quadratic dependences of the reaction rate on the tunneling current in the case the scanning tunneling microscopy is used to excite the vibrations (inelastic tunneling). From the results reported in this paper it should be possible to obtain intramolecular transition rates directly from the experimental data, and gain some understanding on how these important quantities depend on the modes involved and on the substrate.  相似文献   

8.
The temperature dependence of the primary kinetic isotope effect (KIE), combined temperature-pressure studies of the primary KIE, and studies of the alpha-secondary KIE previously led us to infer that hydride transfer from nicotinamide adenine dinucleotide to flavin mononucleotide in morphinone reductase proceeds via environmentally coupled hydride tunneling. We present here a computational analysis of this hydride transfer reaction using QM/MM molecular dynamics simulations and variational transition-state theory calculations. Our calculated primary and secondary KIEs are in good agreement with the corresponding experimental values. Although the experimentally observed KIE lies below the semiclassical limit, our calculations suggest that approximately 99% of the reaction proceeds via tunneling: this is the first "deep tunneling" reaction observed for hydride transfer. We also show that the dominant tunneling mechanism is controlled by the isotope at the primary rather than the secondary position: with protium in the primary position, large-curvature tunneling dominates, whereas with deuterium in this position, small-curvature tunneling dominates. Also, our study is consistent with tunneling being preceded by reorganization: in the reactant, the rings of the nicotinamide and isoalloxazine moieties are stacked roughly parallel to each other, and as the system moves toward a "tunneling-ready" configuration, the nicotinamide ring rotates to become almost perpendicular to the isoalloxazine ring.  相似文献   

9.
The H/D primary kinetic isotope effect (KIE) for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) is calculated as a function of temperature employing ensemble-averaged variational transition-state theory with multidimensional tunneling. The calculated KIEs display only a small temperature dependence over the temperature range of 5 to 45 degrees C. We identify two key features that contribute to canceling most of the temperature dependence of the KIE that would be expected on the basis of simpler models. Related issues such as the isotope effects on Arrhenius preexponential factors, large differences between free energies of activation and Arrhenius activation energy, and fluctuations of effective barriers are also discussed.  相似文献   

10.
The possibilities of hydrogen atom tunneling transfer in biological liquids are discussed. Basic mechanisms of temperature and pressure effects on the tunneling rate constant are considered: the reorganization of reagents and the medium due to the transfer of H atoms and changes in the value and shape of the chemical reaction potential barrier upon intermolecular and soft intramolecular vibrations. Expressions are derived for the tunneling transition rate constant and kinetic isotopic effect as functions of temperature and pressure. It is found that the temperature dependence of the isotope effect is mainly affected by the second mechanism only. The theory is compared with the literature??s experimental data on the temperature dependence of the isotope effect. It is shown that experiments are described well by the theory at sensible values of the fitting parameters.  相似文献   

11.
The dynamical behavior and the temperature dependence of the kinetic isotope effects (KIEs) are examined for the proton-coupled electron transfer reaction catalyzed by the enzyme soybean lipoxygenase. The calculations are based on a vibronically nonadiabatic formulation that includes the quantum mechanical effects of the active electrons and the transferring proton, as well as the motions of all atoms in the complete solvated enzyme system. The rate constant is represented by the time integral of a probability flux correlation function that depends on the vibronic coupling and on time correlation functions of the energy gap and the proton donor-acceptor mode, which can be calculated from classical molecular dynamics simulations of the entire system. The dynamical behavior of the probability flux correlation function is dominated by the equilibrium protein and solvent motions and is not significantly influenced by the proton donor-acceptor motion. The magnitude of the overall rate is strongly influenced by the proton donor-acceptor frequency, the vibronic coupling, and the protein/solvent reorganization energy. The calculations reproduce the experimentally observed magnitude and temperature dependence of the KIE for the soybean lipoxygenase reaction without fitting any parameters directly to the experimental kinetic data. The temperature dependence of the KIE is determined predominantly by the proton donor-acceptor frequency and the distance dependence of the vibronic couplings for hydrogen and deuterium. The ratio of the overlaps of the hydrogen and deuterium vibrational wavefunctions strongly impacts the magnitude of the KIE but does not significantly influence its temperature dependence. For this enzyme reaction, the large magnitude of the KIE arises mainly from the dominance of tunneling between the ground vibronic states and the relatively large ratio of the overlaps between the corresponding hydrogen and deuterium vibrational wavefunctions. The weak temperature dependence of the KIE is due in part to the dominance of the local component of the proton donor-acceptor motion.  相似文献   

12.
The subject of proton transfer between carbon acids and nitrogen bases in aprotic solvents is reviewed. Equilibrium and rate constants that characterize such reactions are most often determined utilizing UV-visible spectrophotometry. At ambient temperature reaction rates are sufficiently rapid that fast reaction methods, for example, the stopped-flow and temperature-jump techniques are required in many cases. Variation of the properties of the donor and acceptor reaction pairs enables electronic and steric effects upon thermodynamic and kinetic parameters of proton transfer to be assessed. Determination of the kinetic isotope effect (KIE), i.e. k(protium)/k(deuterium) led to the conclusion that, under certain circumstances and when the KIE is greater than seven, the proton undergoes reaction with a significant degree of quantum mechanical tunneling, consistent with a theoretical prediction advanced several decades earlier. In fact this aspect may be one of the most significant outgrowths of these studies. Many reactions have been characterized (by tunneling) but rarely are the reacting systems experimentally amenable to obtaining all the experimental criteria that support tunneling. Controversy that has arisen regarding treatment of experimental data and resulting conclusions from them is visited in this review. The structural nature of the product state of reaction is formulated based on spectroscopic evidence, in favorable cases, and probable structures of the transition state can be inferred.  相似文献   

13.
Rates, kinetic isotope effects (KIE), and Swain-Schaad exponents (SSE) have been calculated for a variety of isotopologues for the [1,5] shift in (Z)-1,3-pentadiene using mPW1K/6-31+G(d,p). Quantum mechanical effects along the reaction coordinate were incorporated with the zero-curvature tunneling (ZCT) model and with the multidimensional small curvature tunneling (SCT) model, which allows for coupling of modes perpendicular to the reaction coordinate. The latter model gives the best agreement with experimental rates and primary KIEs. The small quasiclassical primary KIE (2.6) is rationalized in terms of a nonlinear transition state. For sp3 to sp2 rehybridization, the quasiclassical alpha-secondary KIE shows an unusual inverse effect due to compression of the nonbonding hydrogens in the suprafacial transition state. SCT transmission coefficients (kappa) increase the rates by as much as one order of magnitude. Tunneling allows the reactant to evade 1-2.5 kcal/mol of the barrier depending on the isotope. Inclusion of tunneling in the secondary KIE increases it beyond the equilibrium isotope effect and converts the inverse effect (0.95) into a normal KIE (1.12). Tunneling was found to deflate the primary y SSE but by an amount too small to distinguish it from the quasiclassical SSE. On the other hand, when a specific labeling pattern is used, the difference between the quasiclassical secondary SSE (4.1) and the tunneling secondary SSE (2.3) may be sufficiently large to detect tunneling. The mixed secondary SSE shows even larger differences.  相似文献   

14.
H-transfer was studied in the complex kinetic cascade of dihydrofolate reductase. Intrinsic kinetic isotope effects, their temperature dependence, and other temperature-dependent parameters indicated H-tunneling, but no 1 degrees to 2 degrees coupled motion. The data also suggested environmentally coupled tunneling and commitment to catalysis on pre-steady-state isotope effects.  相似文献   

15.
It has been suggested that the magnitudes of secondary kinetic isotope effects (2 degrees KIEs) of enzyme-catalyzed reactions are an indicator of the extent of reaction-center rehybridization at the transition state. A 2 degrees KIE value close to the corresponding secondary equilibrium isotope effects (2 degrees EIE) is conventionally interpreted as indicating a late transition state that resembles the final product. The reliability of using this criterion to infer the structure of the transition state is examined by carrying out a theoretical investigation of the hybridization states of the hydride donor and acceptor in the Escherichia coli dihydrofolate reductase (ecDHFR)-catalyzed reaction for which a 2 degrees KIE close to the 2 degrees EIE was reported. Our results show that the donor carbon at the hydride transfer transition state resembles the reactant state more than the product state, whereas the acceptor carbon is more productlike, which is a symptom of transition state imbalance. The conclusion that the isotopically substituted carbon is reactant-like disagrees with the conclusion that would have been derived from the criterion of 2 degrees KIEs and 2 degrees EIEs, but the breakdown of the correlation with the equilibrium isotope effect can be explained by considering the effect of tunneling.  相似文献   

16.
The transfer of hydride, proton, or H atom between substrate and cofactor in enzymes has been extensively studied for many systems, both experimentally and computationally. A simple equation for the reaction rate, an analog of an equation obtained earlier for electron transfer rates, is obtained, but now containing an approximate analytic expression for the bond rupture-bond forming feature of these H transfers. A "symmetrization," of the potential energy surfaces is again introduced [R. A. Marcus, J. Chem. Phys. 43, 679 (1965); J. Phys. Chem. 72, 891 (1968)], together with Gaussian fluctuations of the remaining coordinates of the enzyme and solution needed for reaching the transition state. Combining the two expressions for the changes in the difference of the two bond lengths of the substrate-cofactor subsystem and in the fluctuation coordinates of the protein leading to the transition state, an expression is obtained for the free energy barrier. To this end a two-dimensional reaction space (m,n) is used that contains the relative coordinates of the H in the reactants, the heavy atoms to which it is bonded, and the protein/solution reorganization coordinate, all leading to the transition state. The resulting expression may serve to characterize in terms of specific parameters (two "reorganization" terms, thermodynamics, and work terms), experimental and computational data for different enzymes, and different cofactor-substrate systems. A related characterization was used for electron transfers. To isolate these factors from nuclear tunneling, when the H-tunneling effect is large, use of deuterium and tritium transfers is of course helpful, although tunneling has frequently and understandably dominated the discussions. A functional form is suggested for the dependence of the deuterium kinetic isotope effect (KIE) on DeltaG degrees and a different form for the 13C KIE. Pressure effects on deuterium and 13C KIEs are also discussed. Although formulated for a one-step transfer of a light particle in an enzyme, the results would also apply to single-step transfers of other atoms and groups in enzymes and in solution.  相似文献   

17.
Xylose isomerase exhibits a bridged-bimetallic active-site motif in which the substrate is bound to two metals connected by a glutamate bridge, and X-ray crystallographic studies suggest that metal movement is involved in the hydride transfer rate-controlling catalytic step. Here we report classical/quantal dynamical simulations of this step that provide new insight into the metal motion. The potential energy surface is calculated by treating xylose with semiempirical molecular orbital theory augmented by a simple valence bond potential and the rest of the system by molecular mechanics. The rate constant for the hydride-transfer step was calculated by ensemble-averaged dynamical simulations including both variational transition-state theory for determination of the statistically averaged dynamical bottleneck and optimized multidimensional tunneling calculations. The dynamics calculations include 25 317 atoms, with quantized vibrational free energy in 89 active-site degrees of freedom, and with 32 atoms moving through static secondary zone transition-state configurations in the quantum tunneling simulation. Our simulations show that the average Mg-Mg distance R increases monotonically as a function of the hydride-transfer progress variable z. The range of the average R along the reaction path is consistent with the X-ray structure, thus providing a dynamical demonstration of the postulated role of Mg in catalysis. We also predicted the primary deuterium kinetic isotope effect (KIE) for the chemical step. We calculated a KIE of 3.8 for xylose at 298 K, which is consistent with somewhat smaller experimentally observed KIEs for glucose substrate at higher temperatures. More than half of our KIE is due to tunneling; neglecting quantum effects on the reaction coordinate reduces the calculated KIE to 1.8.  相似文献   

18.
The energy profile for the tautomerization reaction of 1,4-dimethylanthrone in the first triplet electronic state obtained through electronic calculations (B3LYP/ 6-31G(d)) is used to calculate the rate constants for the process at a wide range of energies using a modified RRKM microcanonical statistical formalism that takes into account tunneling. Through partial or total substitution of the hydrogen atoms of the methyl groups by deuterium atoms, it is possible to evaluate different primary and secondary kinetic isotope effects (KIE). These results can be compared with experimental data for these processes taking place in solid matrix at extremely low temperatures (4-50 K). Such a comparison allows us to conclude that the reaction is taking place at energies just slightly below (around 0.5 kcal/mol) the adiabatic potential energy barrier, a result that was previously found for other related molecules so that this mechanism may be extended to the photoenolization of other o-aryl methyl ketones. Analysis of the different factors contributing to the primary and secondary KIEs discloses that at energies not far below the adiabatic barrier, the tunneling effect is not the only factor that accounts for the large KIE but the differences in the energy level distribution upon isotopic substitution may be the predominant factor at a certain range of negative energies (this is especially so for the case of primary KIE). At positive energies (above the barrier) the levels factor is always the dominant factor in the total KIE.  相似文献   

19.
Proton tunneling dominates the oxidative deamination of tryptamine catalyzed by the enzyme aromatic amine dehydrogenase. For reaction with the fast substrate tryptamine, a H/D kinetic isotope effect (KIE) of 55 +/- 6 has been reported-one of the largest observed in an enzyme reaction. We present here a computational analysis of this proton-transfer reaction, applying combined quantum mechanics/molecular mechanics (QM/MM) methods (PM3-SRP//PM3/CHARMM22). In particular, we extend our previous computational study (Masgrau et al. Science 2006, 312, 237) by using improved energy corrections, high-level QM/MM methods, and an ensemble of paths to estimate the tunneling contributions. We have carried out QM/MM molecular dynamics simulations and variational transition state theory calculations with small-curvature tunneling corrections. The results provide detailed insight into the processes involved in the reaction. Transfer to the O2 oxygen of the catalytic base, Asp128beta, is found to be the favored reaction both thermodynamically and kinetically, even though O1 is closer in the reactant complex. Comparison of quantum and classical models of proton transfer allows estimation of the contribution of hydrogen tunneling in lowering the barrier to reaction in the enzyme. A reduction of the activation free energy due to tunneling of 3.1 kcal mol-1 is found, which represents a rate enhancement due to tunneling by 2 orders of magnitude. The calculated KIE of 30 is significantly elevated over the semiclassical limit, in agreement with the experimental observations; a semiclassical value of 6 is obtained when tunneling is omitted. A polarization of the C-H bond to be broken is observed due to the close proximity of the catalytic aspartate and the (formally) positively charged imine nitrogen. A comparison is also made with the related quinoprotein methylamine dehydrogenase (MADH)-the much lower KIE of 11 that we obtain for the MADH/methylamine system is found to arise from a more endothermic potential energy surface for the MADH reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号