首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Lipid liquid crystalline nanoparticles such as cubosomes and hexosomes have unique internal nanostructures that have shown great potential in drug and nutrient delivery applications. The triblock copolymer, Pluronic F127, is usually employed as a steric stabilizer in dispersions of lipid nanostructured particles. In this study, we investigated the formation, colloidal stability and internal nanostructure and morphology of glyceryl monooleate (GMO) and phytantriol (PHYT) cubosome dispersions on substituting β-casein with F127 in increasing proportion as the stabilizer. Internal structure and particle morphology were evaluated using small-angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (cryo-TEM), while protein secondary structure was studied using synchrotron radiation circular dichroism (SRCD). The GMO cubosome dispersion stabilized by β-casein alone displayed a V(2) (Pn3m) phase structure and a V(2) to H(2) phase transition at 60 °C. In comparison, F127-stabilized GMO dispersion had a V(2) (Im3m) phase structure and the H(2) phase only appeared at higher temperature, that is, 70 °C. In the case of PHYT dispersions, only the V(2) (Pn3m) phase structure was observed irrespective of the type and concentration of stabilizers. However, β-casein-stabilized PHYT dispersion displayed a V(2) to H(2) to L(2) transition behavior upon heating, whereas F127-stabilized PHYT dispersion displayed only a direct V(2) to L(2) transition. The protein secondary structure was not disturbed by interaction with GMO or PHYT cubosomes. The results demonstrate that β-casein provides steric stabilization to dispersions of lipid nanostructured particles and avoids the transition to Im3m structure in GMO cubosomes, but also favors the formation of the H(2) phase, which has implications in drug formulation and delivery applications.  相似文献   

2.
The rheology of the aqueous solution of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO?PPO?PEO) triblock copolymer, Pluronic F68 in the presence of KF was studied in the temperature range from 15 to 60°C. The variation of the shear stress according to the shear rate shows that independently from the temperature and concentration, the F68 solutions exhibit a Newtonian behavior. The results show that the Critical Micelle Temperature of Pluronic F68 in a KF aqueous solution decreases with the increase in the salt concentration.  相似文献   

3.
Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.  相似文献   

4.
The effects caused by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO; Pluronic) copolymers on the structure and stability of dioleoylphosphatidylethanolamine (DOPE) liposomes were studied by means of turbidity, leakage, and cryo-transmission electron microscopy investigations. The results show that by inclusion of Pluronics in the DOPE dispersion it is possible to stabilize the lamellar Lalpha phase and to produce liposomes that are stable and nonleaky at low pH (pH 5). The stabilizing capacity was observed to depend critically on the molecular composition of the Pluronics. Block copolymers with comparably long PPO and PEO segment lengths, such as F127 and F108, most effectively protected DOPE liposomes prepared at high pH from aggregation and subsequent structural rearrangements induced by acidification. A sufficiently long PPO block was found to be the most decisive parameter in order to obtain adequate coverage of the liposome surface at low Pluronic concentrations. Upon increasing the copolymer concentration, however, Pluronics with comparably short PPO and PEO segment lengths, such as F87 and P85, could also be used to stabilize the DOPE liposomes. Essentially the same trends were observed when the Pluronics were added to preformed DOPE liposomes instead of being included in the preparation mixture. In this case the least effective copolymers failed, however, to completely prevent the DOPE liposomes from releasing encapsulated hydrophilic markers.  相似文献   

5.
In this work the preparation mechanism, properties and temperature-triggered aggregation of poly(D, L-lactide- co-glycolide) (PLGA) dispersions are investigated. The dispersions were prepared by interfacial deposition in aqueous solution containing Pluronic L62 (EO(6)PO(30)EO(6)) or F127NF (EO(101)PO(56)EO(101)), where EO and PO are ethylene oxide and propylene oxide, respectively. PLGA dispersions were also prepared in the absence of added Pluronic for comparison. The PLGA particles were characterized using SEM, photon correlation spectroscopy and electrophoretic mobility measurements. It was found that the hydrodynamic diameter (d) increased with PLGA concentration used in the organic solvent phase ( C PLGA(o) ). The value for d was proportional to C(PLGA)(o) (1/3). The value for d increased upon addition of 0.04 M NaNO(3) which demonstrated the importance of electrostatic interactions during particle formation. Electrophoretic mobility measurements were conducted as a function of pH and the data used to estimate the Pluronic layer thicknesses on the PLGA particles. The layer thickness was greatest for the PLGA particles prepared in the presence of Pluronic F127NF. PLGA dispersions containing Pluronic L62 exhibited temperature-triggered aggregation in the presence of 0.15 M NaNO(3). It was found that the critical temperature for dispersion aggregation (T(crit)) was comparable to the cloud point temperature ( T(cp)) for the parent Pluronic L62 solution. Conditions were established for achieving temperature-triggered aggregation at body temperature for PLGA particle/Pluronic L62 dispersions under physiological ionic strength and pH conditions. The PLGA/Pluronic L62 mixtures studied may have potential for use as injectable biodegradable implants for controlled release applications.  相似文献   

6.
在大分子F127为表面活性剂的反相微乳液体系中,合成AgCl纳米粒子。然后通过聚合制备AgCl/F127-PMMA有机/无机杂化膜,用于苯/环己烷混合物的渗透汽化分离。利用电导率仪、紫外可见光谱及透射电镜研究微乳液的增溶水量(ω)对微乳液结构、胶束中AgCl粒子的生成和形貌的影响。结果表明:合成的AgCl粒子粒径小于10 nm;增加微乳液的ω,生成的AgCl粒子变大。聚合后制备的AgCl/F127-PMMA有机/无机杂化膜中,AgCl粒子能保持较好的分散性。50wt%苯/环己烷混合物的渗透汽化结果表明,在合适的ω下,所制备的AgCl/F127-PMMA有机/无机杂化膜能克服常规高分子膜的trade-off现象,表现出较好的分离性能。  相似文献   

7.
Ordered mesoporous silicas (OMSs) were prepared at different temperatures by using tetraethyl orthosilicate (TEOS) as a silica source, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer (Pluronic F127) as a structure directing agent and sodium chloride as an additive under acidic conditions and microwave irradiation. The small angle X-ray diffraction patterns of these samples indicate the presence of ordered mesopores, while adsorption studies show that they possess high volumes of pores, bimodal pore size distributions and large pore sizes. There is an interesting change in the hysteresis loop of nitrogen adsorption isotherms with increasing temperature of hydrothermal treatment; a delayed desorption characteristic for cage-like mesostructures is observed for the OMS samples treated at 100 and 120?°C, while the hydrothermal treatment at 140 and 160?°C leads to the samples having hysteresis loops characteristic for channel-like materials.  相似文献   

8.
A thermo-responsive separation matrix, consisting of Pluronic F127 tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide), was used to separate DNA fragments by microchip electrophoresis. At low temperature, the polymer matrix was low in viscosity and allowed rapid loading into a microchannel under low pressure. With increasing temperatures above 25°C, the Pluronic F127 solution forms a liquid crystalline phase consisting of spherical micelles with diameters of 17–19 nm. The solution can be used to separate DNA fragments from 100 bp to 1500 bp on poly(methyl methacrylate) (PMMA) chips. This temperature-sensitive and viscosity-tunable polymer provided excellent resolution over a wide range of DNA sizes. Separation is based on a different mechanism compared with conventional matrices such as methylcellulose. To illustrate the separation mechanism of DNA in a Pluronic F127 solution, DNA molecular imaging was performed by fluorescence microscopy with F127 polymer as the separation matrix in microchip electrophoresis. Figure Temperature dependence of the viscosity of 20% w/w Pluronic F127 solution in 1xTBE buffer. Dotted approximates resultant curve.  相似文献   

9.
A method for poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) desorption from synthetic nonporous polymeric membranes, using hexane:isopropanol treatment and subsequent colorimetric quantification, is described. The polymers polysulfone, poly(vinyldiene fluoride), and poly(ether imide) were used to fabricate solid adsorption matrices. The desorbed Pluronic F108 forms a color complex with ammonium ferrothiocyanate (NH4FeSCN) and is based on partitioning of a chromophore present in NH4FeSCN from an aqueous phase to a chloroform phase in the presence of Pluronic. The protocols for Pluronic desorption and detection are simple, sensitive, inexpensive, rapid, and reproducible over a wide range of Pluronic coating concentrations and membrane surface chemistries. A linear response over the concentration range from 3 to 130 microg ml(-1) is obtained. The adsorption isotherms for flat sheet membranes are also described and the Langmuir equation provides the best fit for the adsorption data obtained within the concentration range studied. The absence of any significant interference from certain proteins, vitamins, carbohydrates, plasma, and halogenated derivatives makes the assay equally suitable for the estimation of Pluronic F108 in the attendant Pluronic conjugates or in biomedical applications. Using nonporous hollow fine fibers and capillary membranes as model curved substrates we were also able to correlate an increase in the radius of curvature with a corresponding increase in the surface interfacial adsorption of Pluronic F108.  相似文献   

10.
Dynamic Stokes' shift and fluorescence anisotropy measurements using coumarin-153 (C153) and coumarin-151 (C151) as the fluorescence probes have been carried out in aqueous poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20 (P123) and poly(ethylene oxide)100-poly(propylene oxide)70-poly(ethylene oxide)100 (F127) block copolymer micelles with an aim to understand the water structures and dynamics in the micellar corona region. It has been established that the probes reside in the micellar corona region. It is indicated that the corona regions of P123 and F127 micelles are relatively less hydrated than the Palisade layers of neutral micelles like Triton-X-100 and Brij-35. From the appraisal of total Stokes' shift values for the probes in the two block copolymer micelles, it is inferred that the F127 micelle is more hydrated than the P123 micelle. It is observed that the dynamic Stokes' shift values for both of the probes remain more or less similar at all the temperatures studied in the P123 micelle. For C153 in F127, however, the observed Stokes' shift is seen to decrease quite sharply with temperature, though it remains quite similar for C151. Moreover, the fraction of the unobserved initial dynamic Stokes' shift is appreciably higher for both the probes in the F127 micelle compared to that in P123. Over the studied temperature range of 293-313 K, the spectral shift correlation function is described adequately by a bi-exponential function. Rotational relaxation times for C153 in both the micelles show a kind of transition at around 303 K. These results have been rationalized assuming collapse of the poly(ethylene oxide) (PEO) blocks and formation of water clusters in the corona region due to dehydration of poly(ethylene oxide) blocks with an increase in temperature. A dissimilar probe location has been inferred for the differences in the results with C153 and C151 probes in F127. Comparison of the microviscosity and the hydration of the block copolymer micelles has also been made with those of the other commonly used neutral micelles, for a better understanding of the results in the block copolymer micelles.  相似文献   

11.
杨卓理  李馨儒  杨可伟  刘艳 《化学学报》2007,65(19):2169-2174
合成了一系列亲水、疏水链段质量比例不同的聚乙二醇-聚乳酸(PEG-PLA)嵌段共聚物胶束, 并以两性霉素B为模型药物制备了载药胶束. 为获得稳定性良好的、可长期储存的载药胶束剂型, 对胶束进行了冷冻干燥. 使用不同浓度的糖类(包括甘露糖、海藻糖、葡萄糖)、泊洛沙姆188 (Pluronic F68)、聚乙二醇作为冻干保护剂, 以冻干产品的重分散性、冻干前后胶束的粒径及多分散性为指标评价各种保护剂的保护效果. 结果发现, 当嵌段聚合物中聚乳酸链段的质量百分比小于或等于聚乙二醇时, 糖类、Pluronic F68和PEG均可以起到有效的冻干保护作用; 而对于聚乳酸链段质量比例较大的共聚物胶束, 只有PEG和Pluronic F68能够起到较好的冻干保护作用. 对载药胶束体外释放研究表明, 聚合物胶束的体外释放缓慢, 符合一级动力学特征.  相似文献   

12.
苯基桥键型介孔材料的制备与表征   总被引:1,自引:0,他引:1  
以1,4-二(三乙氧基硅基)-苯为硅源,聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物为模板剂,十六烷基三甲基溴化铵为共模板剂,乙醇为共溶剂,在酸性条件下合成了球形的苯基桥键型有序介孔材料。X射线衍射和透射电镜表征结果表明,该材料具有有序的二维六方相介观结构;傅立叶红外变换、13C和29S i固体核磁共振表征证实硅胶骨架中成功引入了苯基桥键,且在合成和模板移除过程中未发生S i—C键断裂;元素分析表明材料含碳量为34%~39%;热重分析说明材料稳定温度可达300℃;氮气吸附脱附揭示了材料有较高的比表面积(500~600 m2/g)和窄的孔径分布(3.21~3.95 nm)。将该苯基材料不经化学改性直接用作反相高效液相色谱固定相,并与商品键合硅胶苯基色谱柱比较,发现桥键型苯基材料对芳香类化合物具有很好的分离选择性,残留硅羟基明显减少,作为一种新的液相色谱填料具有很好的应用前景。  相似文献   

13.
The temperature-induced structural changes and thermodynamics of ionic microgels based on poly(acrylic acid) (PAA) networks bonded with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) (Pluronic) copolymers have been studied by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (USANS), differential scanning calorimetry (DSC), and equilibrium swelling techniques. Aggregation within microgels based on PAA and either the hydrophobic Pluronic L92 (average composition, EO8PO52EO8; PPO content, 80%) or the hydrophilic Pluronic F127 (average composition, EO99PO67EO99; PPO content, 30%) was studied and compared to that in the solutions of the parent Pluronic. The neutron scattering results indicate the formation of micelle-like aggregates within the F127-based microgel particles, while the L92-based microgels formed fractal structures of dense nanoparticles. The microgels exhibit thermodynamically favorable volume phase transitions within certain temperature ranges due to reversible aggregation of the PPO chains, which occurs because of hydrophobic associations. The values of the apparent standard enthalpy of aggregation in the microgel suspensions indicate aggregation of hydrophobic clusters that are more hydrophobic than the un-cross-linked PPO chains in the Pluronic. Differences in the PPO content in Pluronics L92 and F127 result in a higher hydrophobicity of the resulting L92-PAA-EGDMAmicrogels and a larger presence of hydrophobic, densely cross-linked clusters that aggregate into supramolecular structures rather than micelle-like aggregates such as those formed in the F127-PAA-EGDMA microgels.  相似文献   

14.
Colloidal stabilization of nanoparticle dispersions is central to applications including coatings, mineral extraction, and dispersion of oil spills in oceanic environments, which often involves oil-mineral-aggregates (OMAs). We have an ongoing interest in the modulation of amphiphile micellization and adsorption behavior in aqueous colloidal dispersions in the presence of various additives. Here we evaluate the effect of added salts CaCl2, MgCl2, and NaCl on the micellization and adsorption behavior of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer Pluronic P105 (EO37PO56EO37). In 0.10 wt% silica nanoparticle (10.6 nm average diameter) dispersion, adsorbed block copolymer layer formation begins at a critical surface micelle concentration (csmc) of 0.02 wt%, well below the critical micellization concentration of Pluronic P105 in water. Dye solubilization experiments demonstrate an increase in the csmc upon addition of each salt. Each added salt reaches a level of maximum effectiveness in its ability to disfavor Pluronic P105 adsorption at the silica surface. These peak levels occur at concentrations of 0.005, 0.03, and 0.05 M for CaCl2, MgCl2, and NaCl, respectively, in the presence of 0.10 wt% silica nanoparticles. We explain these results in the context of an electrostatic displacer mechanism and discuss possible connections to OMA-dispersant formation.  相似文献   

15.
The effect of Laponite and an amphiphilic triblock copolymer of poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-poly(ethylene oxide) (PEO) (PEO(99)-PPO(65)-PEO(99), and labeled F127) on the absorption character of two cationic dyes, methylene blue and toluidine blue O, was studied and interpreted in terms of the changing state of aggregation of the dye molecules. The combined effect of the polymer and Laponite on dye absorption was significantly different from their individual influences. Specifically, the presence of Laponite resulted in an increase in monomer population by dispersing the dye on the silicate surface. The presence of F127 also resulted in an increase in the dye monomer population, although to a smaller extent. The combined effect of the polymer and Laponite was an increase in the dimer or aggregate populations attributed to the competition of F127 with the dye molecules for the silicate surface.  相似文献   

16.
Pluronic F127, a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), has generated considerable interest as a drug delivery vehicle due to its ability to gel at physiological temperatures. This work examines the gelation behavior of Pluronic F127 in the presence of a series of hydrophobic pharmaceuticals, to determine whether there is any correlation between gelation and physicochemical parameters of drug solutes. The study includes the local anesthetics dibucaine, lidocaine, and tetracaine; the pharmaceutical additives methyl paraben, ethyl paraben, and propyl paraben; the anti-cancer agents paclitaxel and baccatin III; and the anti-inflammatory agent sulindac. The results indicate that the presence of local anesthetics and pharmaceutical additives allows F127 solutions to form gels at lower copolymer concentrations; local anesthetics and pharmaceutical additives also shift gelation down to a lower gelation temperature. This behavior is strongly dependent on drug solubility; poorly soluble drugs (paclitaxel, baccatin III, sulindac) do not change the lower gelation temperature or minimum F127 concentration for gelation. An equation relating the decrease in gelation temperature to drug solubility is presented, and the equation fits the data well. The results have significant positive implications on the toxicity and economic issues related to use of Pluronic F127 in drug delivery.  相似文献   

17.
Structure and properties of the dispersions of multiwalled carbon nanotubes (MWCNTs) in N,N-dimethylacetamide (DMAc) with different dispersing polymers: polyvinylpyrrolidone (PVP), poly(ethyleneoxide), triblock copolymers poly(ethyleneoxide)-b-poly(propyleneoxide)-b-poly(ethyleneoxide) (Pluronic F127 and Pluronic F108), ethylenediamine tetrakis(ethoxylate-b-propoxylate) tetrol, and ethylenediamine tetrakis(propoxylate-b-ethoxylate) tetrol (Tetronic) of different molecular weights were studied. All studied polymers were shown to be able to disperse MWCNT in DMAc, and MWCNT dispersions appear free of aggregates by visual inspection even after 3 months of keeping at room temperature. Dispersions were characterized by UV–VIS absorption spectroscopy and dynamic light scattering measurements. PVP was found to be the best dispersing polymer for MWCNT in DMAc. It was shown that the yield of the dispersed MWCNT and the average particle size of the MWCNT in DMAc depend on the chemical nature, molecular weight of the dispersing polymer, and solvent quality. The difference in dispersive capacity of the studied polymers is attributed to different dispersion mechanisms for PVP (“polymer wrapping” model) and for other studied dispersing polymers (“loose adsorption” model), which have different efficiencies in DMAc. It was revealed that an increase of dispersing polymer (PVP) concentration at the range of 4.7–37.6 g l?1 results in an average particle size enlargement and MWCNT final concentration reduction.  相似文献   

18.
The effects of poly(ethylene glycol) and its amphiphilic polymers on the products of copper ion reduction in aqueous solutions are studied. Whereas coarse metal dispersions are formed in poly(ethylene glycol) solutions, stable sols of metal nanoparticles with diameters of 2 nm and above are produced in the presence of poly(ethylene glycol monolaurate) and poly(ethylene glycol monostearate). A poly(ethylene glycol)-poly(propylene glycol) block copolymer (Pluronic) also stabilizes copper nanoparticles; however, the interaction product of this copolymer with nanoparticles forms a precipitate. According to the electron microscopy data, sol particles comprise polymer micelles containing included copper nanoparticles.  相似文献   

19.
The adsorption and elution of the antimicrobial peptide nisin at hydrophobic, silanized silica surfaces coated with the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) surfactant Pluronic F108 were measured in situ, with ellipsometry. While such layers are known to inhibit protein adsorption, nisin was observed to adsorb in multilayer quantities, to an extent similar to its adsorption at uncoated, hydrophobic surfaces. The rates of nisin adsorption and elution were generally slower at F108-coated surfaces. And, the sequential adsorption of nisin, including two adsorption-elution cycles at each surface, showed greater differences in adsorption rates between the first and second adsorption cycles, when evaluated at identical mass density, for uncoated relative to F108-coated surfaces. These results indicate that nisin adsorption occurs via "entrapment" within the PEO brush layer at F108-coated surfaces, in this way slowing adsorption and spontaneous elution, and inhibiting post-adsorptive molecular rearrangements by reducing the lateral mobility of nisin. While F108-coated layers rejected adsorption of serum albumin, sequential adsorption experiments carried out with nisin and albumin showed a low level of albumin adsorption when nisin was present at the interface.  相似文献   

20.
The effect of sodium chloride (NaCl) upon the thermally induced association behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, Pluronic P103, has been investigated using pyrene fluorescence spectroscopy. The critical micellization temperature (CMT) of Pluronic P103 in aqueous solution is decreased by the addition of NaCl. The standard enthalpy and entropy of micellization for Pluronic P103 in water are increased in the presence of small amounts of NaCl, but further addition of NaCl decreases the standard enthalpy and entropy of micellization. The I1/I3 ratio of pyrene in aqueous Pluronic P103 solutions at temperature below the CMT decreases with increases of NaCl concentration, which is related to the decrease of PPO solubility. The decrease in polarity of the PPO shifts the CMT toward lower temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号