首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The finite analytic numerical method for 3D quasi‐Laplace equation with conductivity in full tensor form is constructed in this article. For cubic grid system, the gradient of the potential variable will diverge when tending to the common edge joining the four grids with different conductivities. However, the potential gradient along the tangential direction is of limited value. As a consequence, the 3D quasi‐Laplace equations will behave as a quasi‐2D one. An approximate analytical solution of the 3D quasi‐Laplace equation can be found around the common edge, which is expressed as a combination of a power‐law function and a linear function. With the help of this approximate analytical solution, a 3D finite analytical numerical scheme is then constructed. Numerical examples show that the proposed numerical scheme can provide rather accurate solutions only with or subdivisions. More important, the convergent speed of the numerical scheme is independent of the conductivity heterogeneity. In contrast, when using the traditional numerical schemes, typically such as the MPFA method, the refinement ratio for the grid cell needs to increase dramatically to get an accurate result for the strong heterogeneous case.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1475–1492, 2017  相似文献   

2.
In this article, two finite difference schemes for solving the semilinear wave equation are proposed. The unique solvability and the stability are discussed. The second‐order accuracy convergence in both time and space in the discrete H1‐norm for the two proposed difference schemes is proved. Numerical experiments are performed to support our theoretical results.  相似文献   

3.
A numerical method based on a predictor–corrector (P‐C) scheme arising from the use of rational approximants of order 3 to the matrix‐exponential term in a three‐time level recurrence relation is applied successfully to the one‐dimensional sine‐Gordon equation, already known from the bibliography. In this P‐C scheme a modification in the corrector (MPC) has been proposed according to which the already evaluated corrected values are considered. The method, which uses as predictor an explicit finite‐difference scheme arising from the second order rational approximant and as corrector an implicit one, has been tested numerically on the single and the soliton doublets. Both the predictor and the corrector schemes are analyzed for local truncation error and stability. From the investigation of the numerical results and the comparison of them with other ones known from the bibliography it has been derived that the proposed P‐C/MPC schemes at least coincide in terms of accuracy with them. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

4.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

5.
The aim of this paper is to propose a multigrid method to obtain the numerical solution of the one‐dimensional nonlinear sine‐Gordon equation. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a compact finite difference scheme of fourth‐order for discretizing the spatial derivative and the standard second‐order central finite difference method for the time derivative. The proposed method uses the Richardson extrapolation method in time variable. The obtained system has been solved by V‐cycle multigrid (VMG) method, where the VMG method is used for solving the large sparse linear systems. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional sine‐Gordon equation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A conservative two‐grid finite element scheme is presented for the two‐dimensional nonlinear Schrödinger equation. One Newton iteration is applied on the fine grid to linearize the fully discrete problem using the coarse‐grid solution as the initial guess. Moreover, error estimates are conducted for the two‐grid method. It is shown that the coarse space can be extremely coarse, with no loss in the order of accuracy, and still achieve the asymptotically optimal approximation as long as the mesh sizes satisfy in the two‐grid method. The numerical results show that this method is very effective.  相似文献   

7.
This paper presents a method for computing numerical solutions of two‐dimensional Stratonovich Volterra integral equations using one‐dimensional modification of hat functions and two‐dimensional modification of hat functions. The problem is transformed to a linear system of algebraic equations using the operational matrix associated with one‐dimensional modification of hat functions and two‐dimensional modification of hat functions. The error analysis of the method is given. The method is computationally attractive, and applications are demonstrated by a numerical example. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
We study the rate of convergence of some finite difference schemes to solve the two‐dimensional Ginzburg‐Landau equation. Avoiding the difficulty in estimating the numerical solutions in uniform norm, we prove that all the schemes are of the second‐order convergence in L2 norm by an induction argument. The unique solvability, stability, and an iterative algorithm are also discussed. A numerical example shows the correction of the theoretical analysis.© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1340‐1363, 2011  相似文献   

9.
In this article, we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two‐dimensional heat equation. We employ, respectively, second‐order and fourth‐order schemes for the spatial derivatives, and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is nonsingular. Numerical experiments carried out on serial computers show the unconditional stability of the proposed method and the high accuracy achieved by the fourth‐order scheme. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 54–63, 2001  相似文献   

10.
Methodology for development of compact numerical schemes by the practical finite‐analytic method (PFAM) is presented for spatial and/or temporal solution of differential equations. The advantage and accuracy of this approach over the conventional numerical methods are demonstrated. In contrast to the tedious discretization schemes resulting from the original finite‐analytic solution methods, such as based on the separation of variables and Laplace transformation, the practical finite‐analytical method is proven to yield simple and convenient discretization schemes. This is accomplished by a special universal determinant construction procedure using the general multi‐variate power series solutions obtained directly from differential equations. This method allows for direct incorporation of the boundary conditions into the numerical discretization scheme in a consistent manner without requiring the use of artificial fixing methods and fictitious points, and yields effective numerical schemes which are operationally similar to the finite‐difference schemes. Consequently, the methods developed for numerical solution of the algebraic equations resulting from the finite‐difference schemes can be readily facilitated. Several applications are presented demonstrating the effect of the computational molecule, grid spacing, and boundary condition treatment on the numerical accuracy. The quality of the numerical solutions generated by the PFAM is shown to approach to the exact analytical solution at optimum grid spacing. It is concluded that the PFAM offers great potential for development of robust numerical schemes. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

11.
The inverse Cauchy problem of Laplace equation is hard to solve numerically, since it is highly ill-posed in the Hadamard sense. With this in mind, we propose a natural regularization technique to overcome the difficulty. In the linear space of the Trefftz bases for solving the Laplace equation, we introduce a novel concept to construct the Trefftz energy bases used in the numerical solution for the inverse Cauchy problem of the Laplace equation in arbitrary star plane domain. The Trefftz energy bases not only satisfy the Laplace equation but also preserve the energy, whose performance is better than the original Trefftz bases. We test the new method by two numerical examples.  相似文献   

12.
A new high‐resolution indecomposable quasi‐characteristics scheme with monotone properties based on pyramidal stencil is considered. This scheme is based on consideration of two high‐resolution numerical schemes approximated governing equations on the pyramidal stencil with different kinds of dispersion terms approximation. Two numerical solutions obtained by these schemes are analyzed, and the final solution is chosen according to the special criterion to provide the monotone properties in regions where discontinuities of solutions could arise. This technique allows to construct the high‐order monotone solutions and keeps both the monotone properties and the high‐order approximation in regions with discontinuities of solutions. The selection criterion has a local character suitable for parallel computation. Application of the proposed technique to the solution of the time‐dependent 2D two‐phase flows through the porous media with the essentially heterogeneous properties is considered, and some numerical results are presented. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 44–55, 2002  相似文献   

13.
In the current article, we investigate the RBF solution of second‐order two‐space dimensional linear hyperbolic telegraph equation. For this purpose, we use a combination of boundary knot method (BKM) and analog equation method (AEM). The BKM is a meshfree, boundary‐only and integration‐free technique. The BKM is an alternative to the method of fundamental solution to avoid the fictitious boundary and to deal with low accuracy, singular integration and mesh generation. Also, on the basis of the AEM, the governing operator is substituted by an equivalent nonhomogeneous linear one with known fundamental solution under the same boundary conditions. Finally, several numerical results and discussions are demonstrated to show the accuracy and efficiency of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In this article, new stable two‐level explicit difference methods of O(kh2 + h4) for the estimates of for the two‐space dimensional quasi‐linear parabolic equation are derived, where k > 0 and h > 0 are grid sizes in time and space directions, respectively. We use a single computational cell for the methods, which are applicable to the problems both in cartesian and polar coordinates. The proposed methods have the simplicity in nature and employ the same marching type technique of solution. Numerical results obtained by the proposed methods for several different problems were compared with the exact solutions. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 250–261, 2001  相似文献   

17.
In this paper, we propose a discrete duality finite volume (DDFV) scheme for the incompressible quasi‐Newtonian Stokes equation. The DDFV method is based on the use of discrete differential operators which satisfy some duality properties analogous to their continuous counterparts in a discrete sense. The DDFV method has a great ability to handle general geometries and meshes. In addition, every component of the velocity gradient can be reconstructed directly, which makes it suitable to deal with the nonlinear terms in the quasi‐Newtonian Stokes equation. We prove that the proposed DDFV scheme is uniquely solvable and of first‐order convergence in the discrete L2‐norms for the velocity, the strain rate tensor, and the pressure, respectively. Ample numerical tests are provided to highlight the performance of the proposed DDFV scheme and to validate the theoretical error analysis, in particular on locally refined nonconforming and polygonal meshes.  相似文献   

18.
In this article, using a single computational cell, we report some stable two‐level explicit finite difference approximations of O(kh2 + h4) for ?u/?n for three‐space dimensional quasi‐linear parabolic equation, where h > 0 and k > 0 are mesh sizes in space and time directions, respectively. When grid lines are parallel to x‐, y‐, and z‐coordinate axes, then ?u/?n at an internal grid point becomes ?u/?x, ?u/?y, and ?u/?z, respectively. The proposed methods are also applicable to the polar coordinates problems. The proposed methods have the simplicity in nature and use the same marching type of technique of solution. Stability analysis of a linear difference equation and computational efficiency of the methods are discussed. The results of numerical experiments are compared with exact solutions. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 327–342, 2003.  相似文献   

19.
In this paper, we present the approximate solution of damped Boussinesq equation using extended Raviart–Thomas mixed finite element method. In this method, the numerical solution of this equation is obtained using triangular meshes. Also, for discretization in time direction, we use an implicit finite difference scheme. In addition, error estimation and stability analysis of both methods are shown. Finally, some numerical examples are considered to confirm the theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
This article describes a numerical method based on the boundary integral equation and dual reciprocity method for solving the one‐dimensional Sine‐Gordon (SG) equation. The time derivative is approximated by the time‐stepping method and a predictor–corrector scheme is employed to deal with the nonlinearity which appears in the problem. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of this approach. In addition, the conservation of energy in SG equation is investigated. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号