首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a boundary element method for computing numerical solutions of the reaction‐diffusion telegraph equation in unbounded domains. This technique does not need artificial boundary conditions at the computational domain and uses a new algorithm to compute the Fourier transform, the convolution theorem, and the fact that the exact solution of the telegraph equation can be written as an integral transform in terms of the fundamental solution. We use the logistic growth model to find how the population of an organism evolves according to its growth rate. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 326–335, 2015  相似文献   

2.
In this article, a Galerkin's finite element approach based on weighted‐residual is presented to find approximate solutions of a system of fourth‐order boundary‐value problems associated with obstacle, unilateral and contact problems. The approach utilizes a piece‐wise cubic approximations utilizing cubic Hermite interpolation polynomials. Numerical studies have shown the superior accuracy and lesser computational cost of the scheme in comparison to cubic spline, non‐polynomial spline and cubic non‐polynomial spline methods. Numerical examples are presented to illustrate the applicability of the method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1551–1560, 2011  相似文献   

3.
In this article, a new stabilized finite element method is proposed and analyzed for advection‐diffusion‐reaction equations. The key feature is that both the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number are reasonably incorporated into the newly designed stabilization parameter. The error estimates are established, where, up to the regularity‐norm of the exact solution, the explicit‐dependence of the diffusivity, advection, reaction, and mesh size (or the dependence of the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number) is revealed. Such dependence in the error bounds provides a mathematical justification on the effectiveness of the proposed method for any values of diffusivity, advection, dissipative reaction, and mesh size. Numerical results are presented to illustrate the performance of the method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 616–645, 2016  相似文献   

4.
We apply the trial method for the solution of Bernoulli's free boundary problem when the Dirichlet boundary condition is imposed for the solution of the underlying Laplace equation, and the free boundary is updated according to the Neumann boundary condition. The Dirichlet boundary value problem for the Laplacian is solved by an exponentially convergent boundary element method. The update rule for the free boundary is derived from the linearization of the Neumann data around the actual free boundary. With the help of shape sensitivity analysis and Banach's fixed‐point theorem, we shed light on the convergence of the respective trial method. Especially, we derive a stabilized version of this trial method. Numerical examples validate the theoretical findings.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, we present a posteriori error analysis for the regularization formulation of the eigenvalue problem arising from the vibration frequencies of the cavity flow. The quasi‐optimality of the adaptive finite element method is also proved for the single eigenvalues under the Dörfler's marking strategy without marking the oscillation terms and enforcing the so‐called interior node property. Numerical examples illustrate the quasi‐optimality of the adaptive finite element method. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 900–922, 2015  相似文献   

6.
The coupled problem for a generalized Newtonian Stokes flow in one domain and a generalized Newtonian Darcy flow in a porous medium is studied in this work. Both flows are treated as a first‐order system in a stress‐velocity formulation for the Stokes problem and a volumetric flux‐hydraulic potential formulation for the Darcy problem. The coupling along an interface is done using the well‐known Beavers–Joseph–Saffman interface condition. A least squares finite element method is used for the numerical approximation of the solution. It is shown that under some assumptions on the viscosity the error is bounded from above and below by the least squares functional. An adaptive refinement strategy is examined in several numerical examples where boundary singularities are present. Due to the nonlinearity of the problem a Gauss–Newton method is used to iteratively solve the problem. It is shown that the linear variational problems arising in the Gauss–Newton method are well posed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1150–1173, 2015  相似文献   

7.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

8.
In this article, a streamline diffusion finite element method is proposed and analyzed for stationary incompressible magnetohydrodynamics (MHD) equations. This method is stable for any combinations of velocity, pressure, and magnet finite element spaces, without requiring Ladyzenskaja‐Babu?ka‐Brezzi (LBB) condition. The well‐posedness and convergence (at optimal error rate) of this scheme are proved in terms of some conditions. Two numerical experiments are illustrated to validate our theoretical analysis and show the streamline diffusion finite element approach is effective for solving the MHD problems. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1877–1901, 2014  相似文献   

9.
Based on two‐grid discretizations, a two‐parameter stabilized finite element method for the steady incompressible Navier–Stokes equations at high Reynolds numbers is presented and studied. In this method, a stabilized Navier–Stokes problem is first solved on a coarse grid, and then a correction is calculated on a fine grid by solving a stabilized linear problem. The stabilization term for the nonlinear Navier–Stokes equations on the coarse grid is based on an elliptic projection, which projects higher‐order finite element interpolants of the velocity into a lower‐order finite element interpolation space. For the linear problem on the fine grid, either the same stabilization approach (with a different stabilization parameter) as that for the coarse grid problem or a completely different stabilization approach could be employed. Error bounds for the discrete solutions are estimated. Algorithmic parameter scalings of the method are also derived. The theoretical results show that, with suitable scalings of the algorithmic parameters, this method can yield an optimal convergence rate. Numerical results are provided to verify the theoretical predictions and demonstrate the effectiveness of the proposed method. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 425–444, 2017  相似文献   

10.
In this article, a decoupling scheme based on two‐grid finite element for the mixed Stokes‐Darcy problem with the Beavers‐Joseph interface condition is proposed and investigated. With a restriction of a physical parameter α, we derive the numerical stability and error estimates for the scheme. Numerical experiments indicate that such two‐grid based decoupling finite element schemes are feasible and efficient. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1066–1082, 2014  相似文献   

11.
This article deals with the web‐spline‐based finite element approximation of quasi‐Newtonian flows. First, we consider the scalar elliptic p‐Laplace problem. Then, we consider quasi‐Newtonian flows where viscosity obeys power law or Carreau law. We prove well‐posedness at the continuous as well as the discrete level. We give some error bounds for the solution of quasi‐Newtonian flow problem based on the web‐spline method. Finally, we provide the numerical results for the p‐Laplace problem. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 54–77, 2015  相似文献   

12.
Three penalty finite element methods are designed to solve numerically the steady Navier–Stokes equations, where the Stokes, Newton, and Oseen iteration methods are used, respectively. Moreover, the stability analysis and error estimate for these nine algorithms are provided. Finally, the numerical tests confirm the theoretical results of the presented algorithms. Meanwhile, the numerical investigations are provided to show that the proposed methods are efficient for solving the steady Navier–Stokes equations with the different viscosity. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 74‐94, 2014  相似文献   

13.
In this article, we present a stabilized mixed finite element method for solving the coupled Stokes and Darcy‐Forchheimer flows problem. The approach utilizes the same nonconforming Crouzeix‐Raviart element and piecewise constant on the entire domain for the velocity and pressure respectively. We derive a discrete inf‐sup condition and establish the existence and uniqueness of the problem. Optimal‐order error estimates are obtained based on the monotonicity owned by Forchheimer term. Finally, numerical examples are presented to verify the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1070–1094, 2017  相似文献   

14.
This article describes a numerical method based on the boundary integral equation and dual reciprocity method(DRM) for solving the one‐dimensional advection‐diffusion equations. The concept of DRM is used to convert the domain integral to the boundary that leads to an integration free method. The time derivative is approximated by the time‐stepping method. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of the new approach. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
We propose mixed and hybrid formulations for the three‐dimensional magnetostatic problem. Such formulations are obtained by coupling finite element method inside the magnetic materials with a boundary element method. We present a formulation where the magnetic field is the state variable and the boundary approach uses a scalar Dirichlet‐Neumann map to describe the exterior domain. Also, we propose a second formulation where the magnetic induction is the state variable and a vectorial Dirichlet‐Neumann map is used to describe the outer field. Numerical discretizations with “edge” and “face” elements are proposed, and for each discrete problem we study an “inf‐sup” condition. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 85–104, 2002  相似文献   

16.
In this article, we propose and analyze a new decoupled characteristic stabilized finite element method for the time‐dependent Navier–Stokes/Darcy model. The key idea lies in combining the characteristic method with the stabilized finite element method to solve the decoupled model by using the lowest‐order conforming finite element space. In this method, the original model is divided into two parts: one is the nonstationary Navier–Stokes equation, and the other one is the Darcy equation. To deal with the difficulty caused by the trilinear term with nonzero boundary condition, we use the characteristic method. Furthermore, as the lowest‐order finite element pair do not satisfy LBB (Ladyzhen‐Skaya‐Brezzi‐Babuska) condition, we adopt the stabilized technique to overcome this flaw. The stability of the numerical method is first proved, and the optimal error estimates are established. Finally, extensive numerical results are provided to justify the theoretical analysis.  相似文献   

17.
We present a high‐order spectral element method (SEM) using modal (or hierarchical) basis for modeling of some nonlinear second‐order partial differential equations in two‐dimensional spatial space. The discretization is based on the conforming spectral element technique in space and the semi‐implicit or the explicit finite difference formula in time. Unlike the nodal SEM, which is based on the Lagrange polynomials associated with the Gauss–Lobatto–Legendre or Chebyshev quadrature nodes, the Lobatto polynomials are used in this paper as modal basis. Using modal bases due to their orthogonal properties enables us to exactly obtain the elemental matrices provided that the element‐wise mapping has the constant Jacobian. The difficulty of implementation of modal approximations for nonlinear problems is treated in this paper by expanding the nonlinear terms in the weak form of differential equations in terms of the Lobatto polynomials on each element using the fast Fourier transform (FFT). Utilization of the Fourier interpolation on equidistant points in the FFT algorithm and the enough polynomial order of approximation of the nonlinear terms can lead to minimize the aliasing error. Also, this approach leads to finding numerical solution of a nonlinear differential equation through solving a system of linear algebraic equations. Numerical results for some famous nonlinear equations illustrate efficiency, stability and convergence properties of the approximation scheme, which is exponential in space and up to third‐order in time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, we consider a penalty finite element (FE) method for incompressible Navier‐Stokes type variational inequality with nonlinear damping term. First, we establish penalty variational formulation and prove the well‐posedness and convergence of this problem. Then we show the penalty FE scheme and derive some error estimates. Finally, we give some numerical results to verify the theoretical rate of convergence. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 918–940, 2017  相似文献   

19.
In this paper, boundary integral formulations for a time‐harmonic acoustic scattering‐resonance problem are analyzed. The eigenvalues of eigenvalue problems resulting from boundary integral formulations for scattering‐resonance problems split in general into two parts. One part consists of scattering‐resonances, and the other one corresponds to eigenvalues of some Laplacian eigenvalue problem for the interior of the scatterer. The proposed combined boundary integral formulations enable a better separation of the unwanted spectrum from the scattering‐resonances, which allows in practical computations a reliable and simple identification of the scattering‐resonances in particular for non‐convex domains. The convergence of conforming Galerkin boundary element approximations for the combined boundary integral formulations of the resonance problem is shown in canonical trace spaces. Numerical experiments confirm the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A space‐time finite element method is introduced to solve a model forward‐backward heat equation. The scheme uses the continuous Galerkin method for the time discretization. An error analysis for the method is presented. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 257–265, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号