首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this paper, we study a posteriori error estimates of the edge stabilization Galerkin method for the constrained optimal control problem governed by convection-dominated diffusion equations. The residual-type a posteriori error estimators yield both upper and lower bounds for control u measured in L 2-norm and for state y and costate p measured in energy norm. Two numerical examples are presented to illustrate the effectiveness of the error estimators provided in this paper.   相似文献   

2.
In this work, the residual‐type posteriori error estimates of stabilized finite volume method are studied for the steady Stokes problem based on two local Gauss integrations. By using the residuals between the source term and numerical solutions, the computable global upper and local lower bounds for the errors of velocity in H1 norm and pressure in L2 norm are derived. Furthermore, a global upper bound of u ? uh in L2‐norm is also derived. Finally, some numerical experiments are provided to verify the performances of the established error estimators. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
We derive residual‐based a posteriori error estimates of finite element method for linear wave equation with discontinuous coefficients in a two‐dimensional convex polygonal domain. A posteriori error estimates for both the space‐discrete case and for implicit fully discrete scheme are discussed in L(L2) norm. The main ingredients used in deriving a posteriori estimates are new Clément type interpolation estimates in conjunction with appropriate adaption of the elliptic reconstruction technique of continuous and discrete solutions. We use only an energy argument to establish a posteriori error estimates with optimal order convergence in the L(L2) norm.  相似文献   

4.
A general construction technique is presented for a posteriori error estimators of finite element solutions of elliptic boundary value problems that satisfy a Gång inequality. The estimators are obtained by an element–by–element solution of ‘weak residual’ with or without considering element boundary residuals. There is no order restriction on the finite element spaces used for the approximate solution or the error estimation; that is, the design of the estimators is applicable in connection with either one of the hp–, or hp– formulations of the finite element method. Under suitable assumptions it is shown that the estimators are bounded by constant multiples of the true error in a suitable norm. Some numerical results are given to demonstrate the effectiveness and efficiency of the approach.  相似文献   

5.
The purpose of this article is to derive a posteriori error estimates for the H 1-Galerkin mixed finite element method for parabolic problems. We study both semidiscrete and fully discrete a posteriori error analyses using standard energy argument. A fully discrete a posteriori error analysis based on the backward Euler method is analysed and upper bounds for the errors are derived. The estimators yield upper bounds for the errors which are global in space and time. Our analysis is based on residual approach and the estimators are free from edge residuals.  相似文献   

6.
In this article, we study the a posteriori H1 and L2 error estimates for Crouzeix‐Raviart nonconforming finite volume element discretization of general second‐order elliptic problems in ?2. The error estimators yield global upper and local lower bounds. Finally, numerical experiments are performed to illustrate the theoretical findings. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

7.
This paper deals with optimal control problems constrained by linear elliptic partial differential equations. The case where the right‐hand side of the Neumann boundary is controlled, is studied. The variational discretization concept for these problems is applied, and discretization error estimates are derived. On polyhedral domains, one has to deal with edge and corner singularities, which reduce the convergence rate of the discrete solutions, that is, one cannot expect convergence order two for linear finite elements on quasi‐uniform meshes in general. As a remedy, a local mesh refinement strategy is presented, and a priori bounds for the refinement parameters are derived such that convergence with optimal rate is guaranteed. As a by‐product, finite element error estimates in the H1(Ω)‐norm, L2(Ω)‐norm and L2(Γ)‐norm for the boundary value problem are obtained, where the latter one turned out to be the main challenge. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
We derive guaranteed a posteriori error estimates for nonconforming finite element approximations to a singularly perturbed reaction–diffusion problem. First, an abstract a posteriori error bound is derived under a special equilibration condition. Based on conservative flux reconstruction, two error estimators are proposed and provide actual upper error bounds in the usual energy norm without unknown constants, one of which can be directly constructed without solving local Neumann problems and provide practical computable error bounds. The error estimators also provide local lower bounds but with the multiplicative constants dependent on the diffusion coefficient and mesh size, where the constants can be bounded for enough small mesh size comparable with the square root of the diffusion coefficient. By adding edge jumps with weights to the energy norm, two modified error estimators with additional edge tangential jumps are shown to be robust with respect to the diffusion coefficient and provide guaranteed upper bounds on the error in the modified norm. Finally, the performance of the estimators are illustrated by the numerical results.  相似文献   

9.
Summary. Three a posteriori error estimators for PEERS and BDMS elements in linear elasticity are presented: one residual error estimator and two estimators based on the solution of auxiliary local problems with different boundary conditions. All of them are reliable and efficient with respect to the standard norm and furthermore robust for nearly incompressible materials.Correspondence to: R. Verfürth  相似文献   

10.
The aim of this paper is to introduce residual type a posteriori error estimators for a Poisson problem with a Dirac delta source term, in L p norm and W1,p seminorm. The estimators are proved to yield global upper and local lower bounds for the corresponding norms of the error. They are used to guide adaptive procedures, which are experimentally shown to lead to optimal orders of convergence.  相似文献   

11.
Local a posteriori error estimators are derived for linear elliptic problems over general polygonal domains in 2d. The estimators lead to a sharp upper bound for the energy error in a local region of interest. This upper bound consists of H1‐type local error indicators in a slightly larger subdomain, plus weighted L2‐type local error indicators outside this subdomain, which account for the pollution effects. This constitutes the basis of a local adaptive refinement procedure. Numerical experiments show a superior performance than the standard global procedure as well as the generation of locally quasi‐optimal meshes. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 421–442, 2003  相似文献   

12.
C. Carstensen  R. Klose 《PAMM》2002,1(1):490-491
Two a posteriori error estimates are discussed for the p‐Laplace problem. Up to errors in their numerical computation, they provide a guaranteed upper bound for the W1,p‐seminorm and a weighted W1,2‐seminorm of u – uh. The first, sharper a posteriori estimate is based on the numerical solution of local interface problems. The standard residual‐based error estimate is addressed with emphasis on involved constants, determined as local eigenvalues. Numerical examples that illustrate the performance of these estimators can be found in [3].  相似文献   

13.
Highly localized pointwise error estimates for a stabilized Galerkin method are provided for second-order non-selfadjoint elliptic partial differential equations. The estimates show a local dependence of the error on the derivative of the solution u and weak dependence on the global norm. The results in this paper are an extension of the previous pointwise error estimates for the self-adjoint problems. In order to provide pointwise error estimates in the presence of the first-order term in the differential equations, we prove that the stabilized Galerkin solution is higher order perturbation to the Ritz projection of the true solutions. Then, we proceed to obtain pointwise estimates using the so-called discrete Green’s function. Application to error expansion inequalities and a posteriori error estimators are briefly discussed.  相似文献   

14.
In this paper, we propose a posteriori error estimators for certain quantities of interest for a first-order least-squares finite element method. In particular, we propose an a posteriori error estimator for when one is interested in where . Our a posteriori error estimators are obtained by assigning proper weight (in terms of local mesh size hT) to the terms of the least-squares functional. An a posteriori error analysis yields reliable and efficient estimates based on residuals. Numerical examples are presented to show the effectivity of our error estimators.  相似文献   

15.
In this paper, we investigate the a priori and a posteriori error estimates for the discontinuous Galerkin finite element approximation to a regularization version of the variational inequality of the second kind. We show the optimal error estimates in the DG-norm (stronger than the H1 norm) and the L2 norm, respectively. Furthermore, some residual-based a posteriori error estimators are established which provide global upper bounds and local lower bounds on the discretization error. These a posteriori analysis results can be applied to develop the adaptive DG methods.  相似文献   

16.
In this article, a new mixed discontinuous Galerkin finite element method is proposed for the biharmonic equation in two or three‐dimension space. It is amenable to an efficient implementation displaying new convergence properties. Through an auxiliary variable , we rewrite the problem into a two‐order system. Then, the a priori error estimates are derived in L2 norm and in the broken DG norm for both u and p. We prove that, when polynomials of degree r () are used, we obtain the optimal convergence rate of order r + 1 in L2 norm and of order r in DG norm for u, and the order r in both norms for . The numerical experiments illustrate the theoretic order of convergence. For the purpose of adaptive finite element method, the a posteriori error estimators are also proposed and proved to field a sharp upper bound. We also provide numerical evidence that the error estimators and indicators can effectively drive the adaptive strategies. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 318–353, 2017  相似文献   

17.
We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017  相似文献   

18.
本文研究对称椭圆特征值问题的有限元后验误差估计,包括协调元和非协调元,具有下列特色:(1)对协调/非协调元建立了有限元特征函数uh的误差与相应的边值问题有限元解的误差在局部能量模意义下的恒等关系式,该边值问题的右端为有限元特征值λh与uh的乘积,有限元解恰好为uh.从而边值问题有限元解在能量模意义下的局部后验误差指示子,包括残差型和重构型后验误差指示子,成为有限元特征函数在能量模意义下的局部后验误差指示子.(2)讨论了协调有限元特征函数的基于插值后处理的梯度重构型后验误差估计,对有限元特征函数的导数得到了最大模意义下的渐近准确局部后验误差指示子.  相似文献   

19.
We derive optimal order a posteriori error estimates for time discretizations by both the Crank-Nicolson and the Crank-Nicolson-Galerkin methods for linear and nonlinear parabolic equations. We examine both smooth and rough initial data. Our basic tool for deriving a posteriori estimates are second-order Crank-Nicolson reconstructions of the piecewise linear approximate solutions. These functions satisfy two fundamental properties: (i) they are explicitly computable and thus their difference to the numerical solution is controlled a posteriori, and (ii) they lead to optimal order residuals as well as to appropriate pointwise representations of the error equation of the same form as the underlying evolution equation. The resulting estimators are shown to be of optimal order by deriving upper and lower bounds for them depending only on the discretization parameters and the data of our problem. As a consequence we provide alternative proofs for known a priori rates of convergence for the Crank-Nicolson method.

  相似文献   


20.
We consider a posteriori error estimation for a multipoint flux mixed finite element method for two‐dimensional elliptic interface problems. Within the class of modified quasi‐monotonically distributed coefficients, we derive a residual‐type a posteriori error estimator of the weighted sum of the scalar and flux errors which is robust with respect to the jumps of the coefficients. Moreover, we develop robust implicit and explicit recovery‐type estimators through gradient recovery in an H(curl)‐conforming finite element space. In particular, we apply a modified L2 projection in the implicit recovery procedure so as to reduce the computational cost of the recovered gradient. Numerical experiments confirm the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号