首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxidase was purified in a single step using 4-amino benzohydrazide affinity chromatography from red cabbage (Brassica oleracea var. capitata f. rubra), and some important biochemical characteristics of the purified enzyme were determined. The enzyme, with a specific activity of 3,550 EU/mg protein, was purified 120.6-fold with a yield of 2.9 % from the synthesized affinity matrix. The molecular weight of the enzyme was found to be 69.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited maximum activity at pH 7.0 and 30 °C. For guaiacol substrate, the K m and V max values were found as 0.048 mM and 1.46 EU/mL/min, respectively. Additionally, the IC50 and K i values for 4-amino benzohydrazide were calculated to be 1.047 and 0.702?±?0.05 mM, respectively, and 4-amino benzohydrazide showed noncompetitive inhibition.  相似文献   

2.
In the present study, purification and properties of an extracellular neutral serine protease from the fungus Penicillium italicum and its potential application as an antioxidant peptides producer are reported. The protease was purified to homogeneity using ammonium sulfate precipitation, Sephacryl S-200 gel filtration, diethylaminoethanol (DEAE)-Sepharose ion exchange chromatography, and TSK-HPLC gel filtration with a 10.2-fold increase in specific activity and 25.8 % recovery. The purified enzyme appeared as single protein band with a molecular mass of 24 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature for the proteolytic activity were pH 7.0 and 50 °C, respectively. The enzyme was stable in the pH range of 6.0–9.0. The protease was activated by divalent cations such as Ca2+ and Mg2+. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and relatively broad specificity. Scorpaena notata muscle protein hydrolysates prepared using purified serine protease (protease from P. italicum (Prot-Pen)) showed good in vitro antioxidative activities. The antioxidant activities of Scorpaena muscle protein hydrolyzed by Prot-Pen (SMPH-PP) were evaluated using various antioxidant assays: 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing power, ferrous chelating activity, and DNA nicking assay. SMPH-PP showed varying degrees of antioxidant activity and almost the same strongest protection against hydroxyl radical induced DNA breakage.  相似文献   

3.
A strain that exhibited intracellular proline-specific aminopeptidase (PAP) activity was isolated from soy sauce koji and identified as Aspergillus oryzae JN-412. The gene coding PAP was cloned and efficiently expressed in Escherichia coli BL21 in a biologically active form. The highest specific activity reached 52.28 U mg?1 at optimum cultivation conditions. The recombinant enzyme was purified 3.3-fold to homogeneity with a recovery of 36.7 % from cell-free extract using Ni-affinity column chromatography. It appeared as a single protein band on SDS-PAGE with molecular mass of approximately 50 kDa. The purified enzyme exhibited the highest activity at 60 °C and pH 7.5. The enzyme activity was inhibited by PMSF and ions like Zn2+ and Cu2+. DTT, β-mercaptoethanol, EDTA, and ions like Co2+, Mg2+, Mn2+, and Ca2+ had no influence on enzyme activity, whereas Ni2+ enhanced the enzyme activity. By using collagen as a substrate, the purified recombinant prolyl aminopeptidase contributed to the hydrolysis of collagen when used in combination with neutral protease, and free amino acids in collagen hydrolysates was significantly increased.  相似文献   

4.
A Gram-negative, aerobic, motile, rod-shaped, agarolytic bacterium, designated as H7, was isolated from a coastal seawater sample. This strain grows at pH 6.0–8.0, temperature of 15–40 °C, and at an NaCl concentration of 1–7 % (w/v). Ubiquinone-8 was the predominant respiratory quinone, and the DNA G+C content was 45.82 mol%. Analysis of the 16S rRNA sequence suggests that strain H7 belongs to the genus Pseudoalteromonas. DNA-DNA hybridization analysis showed DNA relatedness of as low as 55.42 and 40.27 % with its nearest phylogenetic neighbors Pseudoalteromonas atlantica IAM12927T and Pseudoalteromonas espejiana NCIMB2127T, respectively, which led us to name H7 Pseudoalteromonas hodoensis sp. nov. The type strain is H7T (=DSM25967T = KCTC23887T). An agarase (AgaA7) was purified to homogeneity from the cell-free culture broth of H7 through many steps of chromatography. Purified AgaA7 had an apparent molecular weight of 35 kDa, with a distinct NH2-terminal sequence of Ala-Asp-Ala-Thr-X-Pro (X, any amino acid) from the reported proteins, implying that it is a novel enzyme. The optimum pH and temperature for agarase activity were 7.0 and 45 °C, respectively. Thin-layer chromatography analysis, mass spectrometry, and enzyme assay using p-nitrophenyl-α/β-D-galactopyranoside revealed that AgaA7 is both an exo- and endo-type β-agarase that degrades agarose into neoagarotetraose, neoagarohexaose, and neoagarooctaose (minor).  相似文献   

5.
A halotolerant Virgibacillus alimentarius LBU20907 isolated from fermented fish (Budu) was found to be an efficient producer of extracellular halophilic lipase enzyme. The enzyme was purified 5.99-fold with a 0.15% final yield to homogeneity by ammonium sulfate precipitation, followed by dialysis, Toyopearl DEAE-650 M ion exchange chromatography, Toyopearl butyl-650 M hydrophobic interaction chromatography, and Toyopearl-HW 55 F gel filtration chromatography. SDS-PAGE of purified lipase exhibited a homogenous single band with a very high molecular weight of 100 kDa. The properties of purified lipase revealed maximum activity at pH 7.0 and 40 °C. It was also highly stable in a pH range of 6.0–7.0, retaining more than 90% activity for 24 h. It was stable at the temperature of 30–50 °C and maintained more than 80% activity for 16 h. The purified lipase performing the maximal activity in the presence of 20.0% NaCl indicated halophilic enzyme properties. Its lipolytic activity was highest against p-nitrophenyl palmitate. The lipase activity was found to be enhanced in hexane. The enzyme activity was stimulated in the presence of Zn2+, Ca2+, Mg2+, and Sr2+; while, it was completely inhibited by Ba2+ and Co2+. The enzyme had a K m and V max of 108.0 mg and 79.1 U mL?1, respectively.  相似文献   

6.
A highly purified electrophoreticaly homogeneous protein with a NGF activity of 10·105 BU/mg of protein have been isolated from the venom of the Central Asian cobra by gel-filtration and ion-exchange chromatography followed by preparative isolectric focusing in a thin layer of Sephadex. It has been shown that the NGF isolated is characterized by a molecular weight in the range of 20–30 kD and a pI value of about 7.0.  相似文献   

7.
An extracellular l-asparaginase produced by a protease-deficient isolate, Bacillus aryabhattai ITBHU02, was purified to homogeneity using ammonium sulfate fractionation and subsequent column chromatography on diethylaminoethyl-Sepharose fast flow and Seralose CL-6B. The enzyme was purified 68.9-fold with specific activity of 680.47 U mg?1. The molecular weight of the purified enzyme was approximately 38.8 kDa on SDS-PAGE and 155 kDa on native PAGE gel as well as gel filtration column revealing that the enzyme was a homotetramer. The optimum activity of purified l-asparaginase was achieved at pH 8.5 and temperature 40 °C. Kinetic studies depicted that the K m, V max, and k cat values of the enzyme were 0.257 mM, 1.537 U μg?1, and 993.93 s?1, respectively. Circular dichroism spectroscopy has showed that the enzyme belonged to α?+?β class of proteins with approximately 74 % α-helices and 12 % β-sheets. BLASTP analysis of N-terminal sequence K-T-I-I-E-A-V-P-E-L-K-K-I-A of purified l-asparaginase had shown maximum similarity with Bacillus megaterium DSM 319. In vitro cytotoxicity assays with HL60 and MOLT-4 cell lines indicated that the l-asparaginase has significant antineoplastic properties.  相似文献   

8.
l-Glutaminase (E.C.3.5.2.1) extracellularly produced by Bacillus cereus MTCC 1305 was purified to apparent homogeneity with a fine band. The molecular weight of native enzyme and its subunit were found to be approximately 140 and 35 kDa, respectively, which indicates its homotetrameric nature. The substrate specificity test of this enzyme showed its specificity for l-glutamine. The purified enzyme showed maximum activity at optimum pH 7.5 and temperature 35 °C. The enzyme retained stability up to 50 and 20 % even after treatment at 50 and 55 °C, respectively, for 30 min. Monovalent cations (Na+, K+) and phosphate ion activated the enzyme activity, while divalent cations (Mg2+, Mn2+, Zn2+, Pb2+, Ca2+, Co2+, Hg2+, Cd2+, Cu2+) inhibited its activity. Reducing agents (cysteine, glutathione, dithiothreitol, l-ascorbic acid, and β-mercaptoethanol) stimulated its activity, whereas thiol-binding agents (iodoacetamide, p-chloromercuribenzoic acid) resulted in the inhibition of this enzyme. Kinetic parameters, K m, V max, K cat, of purified enzyme were found to be 6.25 mM, 100 μmol/min/mg protein and 2.22?×?102 M?1s?1, respectively. The gradual inhibition in growth of hepatocellular carcinoma (Hep-G2) cell lines was found with IC50 value of 82.27 μg/ml in the presence of different doses of l-glutaminase (10–100 μg/ml).  相似文献   

9.
The polymerization of acrylamide (M) initiated by the Ce4+/thiourea (TU) redox system has been studied in an aqueous sulfuric acid medium at 35 ± 0.2°C under nitrogen atmosphere. The rate of polymerization is governed by the expression The activation energy is 5.9 kcal deg?1 mol?1 in the investigated temperature range 30–50°C. The molecular weight is directly proportional to the concentration of monomer and inversely proportional to the catalyst concentration. With increasing concentration of DMF molecular weight decreases. The range of concentrations for which these observations hold at sulfuric acid concentration of 2.5 × 10?2 mol/L are [monomer] = 5.0 × 10?2–3.0 × 10?1, [catalyst] = (5.0–15.0) × 10?4, and [activator] = (1.0–6.0) × 10?3 mol/L.  相似文献   

10.
Purification and characterization of a chymosin from Rhizopus microsporus var. rhizopodiformis were investigated in the present study. A newly isolated R. microsporus var. rhizopodiformis F518 produced a high level of milk-clotting activity (1,001 SU/mL). A chymosin from the fungus was purified 3.66-fold with a recovery yield of 33.2 %. The enzyme appeared as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of 37.0 kDa. It was optimally active at 60 °C and was stable up to 40 °C. The purified enzyme was an acid protease with an optimum pH of 5.2 and retained 80 % of residual activity within pH 2.0–8.0. The inhibition of 96 and 100 % by pepstatin A at 0.01 and 0.02 mM, respectively, revealed that the enzyme is an aspartic protease. Thus, high milk-clotting activity of the chymosin with good stability will strengthen the potential use of the chymosin as a substitute for calf rennet in cheese manufacturing.  相似文献   

11.
Xanthine oxidase (XOD) catalyzes the metabolism of hypoxanthine and xanthine to uric acid, the overproduction of which could cause hyperuricemia, a risk factor for gout. Inhibition of XOD is a major treatment for gout, and biflavonoids have been found to act as XOD-inhibitory compounds. In this study, ultrafiltration liquid chromatography with photodiode-array detection coupled to electrospray-ionization tandem mass spectrometry (UF-LC-PDA–ESI-MS) was used to screen and identify XOD inhibitors from S. tamariscina. High-performance counter-current chromatography (HPCCC) was used to separate and isolate the active constituents of these XOD inhibitors. Furthermore, ultrahigh-performance liquid chromatography (UPLC) and triple-quadrupole mass spectrometry (TQ-MS) was used to determine the XOD-inhibitory activity of the obtained XOD inhibitors, and enzyme kinetics was performed with Lineweaver–Burk (LB) plots using xanthine as the substrate. As a result, two compounds in S. tamariscina were screened as XOD inhibitors: 65.31 mg amentoflavone and 0.76 mg robustaflavone were isolated from approximately 2.5 g?S. tamariscina by use of HPCCC. The purities of the two compounds obtained were over 98 % and 95 %, respectively, as determined by high-performance liquid chromatography (HPLC). Lineweaver–Burk plot analysis indicated that amentoflavone and robustaflavone were non-competitive inhibitors of XOD, and the IC 50 values of amentoflavone and robustaflavone for XOD inhibition were 16.26 μg mL?1 (30.22 μmol L?1) and 11.98 μg mL?1 (22.27 μmol L?1), respectively. The IC 50 value of allopurinol, used as the standard, was 7.49 μg mL?1 (46.23 μmol L?1). The results reveal that the method for systematic screening, identification, and isolation of bioactive components in S. tamariscina and for detecting their inhibitory activity using ultrafiltration LC–ESI-MS, HPCCC, and UPLC–TQ-MS is feasible and efficient, and could be expected to extend to screening and separation of other enzyme inhibitors. Graphical Abstract
?  相似文献   

12.
The extracellular β-xylosidase (EC 3.2.1.37) excreted by the thermophilic eubacteriumRhodothermus marinus when grown on xylan has been investigated. The enzyme has been partially purified by ultrafiltration and gel filtration, and some of its characteristics are presented.Rhodothermus marinus grew on xylan with μmax= 0.4 h? and the α-xylosidase activity was 50 nkat/mL after 24 h in a batch fermentation. The α-xylosidase activity had a half-life of more than 1 h at 90°C and of 14 h at 85 °C. At 80°C, 80% of the initial activity remained after 24 h. The initial activity increased with increasing temperature, showing maximal activity at 90°C. The β-xylosidase had a pH-optimum of 6 and was stable in the range between pH 5 and 9. At pH 10 and 11, 82 and 66%, respectively, of the initial activity remained after 24 h when incubated at 65°C. The molecular weight was estimated to be 169,000 dalton by gelfiltration.  相似文献   

13.
Production of multiple xylanases, in which each enzyme has a specific characteristic, can be one strategy to achieve the effective hydrolysis of xylan. Three xylanases (xyl 1, xyl 2, and xyl 3) from Aspergillus ochraceus were purified by chromatography using diethylaminoethyl (DEAE) cellulose, Biogel P-60, and Sephadex G-100 columns. These enzymes are glycoproteins of low molecular weight with an optimum temperature at 60 °C. The glycosylation presented is apparently not related to thermostability, since xyl 3 (20 % carbohydrate) was more thermostable than xyl 2 (67 % carbohydrate). Xyl 3 was able to retain most of its activity in a wide range of pH (3.5–8.0), while xyl 1 and xyl 2 presented optimum pH of 6.0. Xyl 1 and xyl 2 were activated by 5 and 10 mM MnCl2 and CoCl2, while xyl 3 was activated by 1 mM of the same compounds. Interestingly, xyl 2 presented high tolerance toward mercury ion. Xylanases from A. ochraceus hydrolyzed xylans of different origins, such as birchwood, oat spelt, larchwood, and eucalyptus (around 90 % or more), except xyl 2 and xyl 3 that hydrolyzed with lesser efficiency eucalyptus (66.7 %) and oat spelt (44.8 %) xylans.  相似文献   

14.
The interaction between drugs and receptors is particularly important in revealing the drug acting mechanism and developing new leads. In this work, α 1-Adrenoceptor (α 1-AR) from HEK293 cell line is purified and immobilized on the surface of macro-pore silica gel to prepare an high-performance affinity chromatography stationary phase for the pursuit of drug–receptor interactions by competition zonal elution. Naftopidil is found to have only one type of binding site to α 1-AR with an association constant of 1.45 × 106 M?1 and a concentration of binding sites of 1.56 × 10?6 M, while terazosin hydrochloride proves to present two kinds of binding site on the receptor at which the association constants are determined to be 1.61 × 105 M?1 and 2.06 × 103 M?1, and the corresponding concentrations of the binding sites are 1.56 × 10?6 M and 1.11 × 10?3 M, respectively. It is concluded that the stationary phase containing attached α 1-AR can be used to realize the binding of a drug to the receptor.  相似文献   

15.
From three cell-associated β-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60–70 °C) over a pH range of 5–9 with a specific activity of 163.3 units (U) mg?1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-β-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 μmol min?1 mg?1 protein, respectively. When combining this β-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g?1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g?1 β-xylosidase and 16 U g?1 xylanase after incubation for 4 h at 70 °C and pH 6.0.  相似文献   

16.
High-performance affinity chromatography (HPAC) was utilized to examine the binding of very low density lipoprotein (VLDL) with drugs, using R/S-propranolol as a model. These studies indicated that two mechanisms existed for the binding of R- and S-propranolol with VLDL. The first mechanism involved non-saturable partitioning of these drugs with VLDL, which probably occurred with the lipoprotein’s non-polar core. This partitioning was described by overall affinity constants of 1.2 (±0.3)?×?106 M?1 for R-propranolol and 2.4 (±0.6)?×?106 M?1 for S-propranolol at pH 7.4 and 37 °C. The second mechanism occurred through saturable binding by these drugs at fixed sites on VLDL, such as represented by apolipoproteins on the surface of the lipoprotein. The association equilibrium constants for this saturable binding at 37 °C were 7.0 (±2.3)?×?104 M?1 for R-propranolol and 9.6 (±2.2)?×?104 M?1 for S-propranolol. Comparable results were obtained at 20 and 27 °C for the propranolol enantiomers. This work provided fundamental information on the processes involved in the binding of R- and S-propranolol to VLDL, while also illustrating how HPAC can be used to evaluate relatively complex interactions between agents such as VLDL and drugs or other solutes.  相似文献   

17.
Malic enzymes are a class of oxidative decarboxylases that catalyze the oxidative decarboxylation of malate to pyruvate and carbon dioxide, with concomitant reduction of NAD(P)+ to NAD(P)H. The NADP+-dependent malic enzyme in oleaginous fungi plays a key role in fatty acid biosynthesis. In this study, the malic enzyme-encoding complementary DNA (cDNA) (malE1) from the oleaginous fungus Mortierella alpina was cloned and expressed in Escherichia coli BL21 (DE3). The recombinant protein (MaME) was purified using Ni-NTA affinity chromatography. The purified enzyme used NADP+ as the cofactor. The K m values for l-malate and NADP+ were 2.19?±?0.01 and 0.38?±?0.02 mM, respectively, while the V max values were 147?±?2 and 302?±?14 U/mg, respectively, at the optimal condition of pH 7.5 and 33 °C. MaME is active in the presence of Mn2+, Mg2+, Co2+, Ni2+, and low concentrations of Zn2+ rather than Ca2+, Cu2+, or high concentrations of Zn2+. Oxaloacetic acid and glyoxylate inhibited the MaME activity by competing with malate, and their K i values were 0.08 and 0.6 mM, respectively.  相似文献   

18.
This paper presents the development, optimization, and validation of a LC-MS/MS methodology to determine the concentration of the antifungal drug and fungicide tebuconazole in a controlled exposure study of African clawed frogs (Xenopus laevis). The method is validated on animal tank water and on tissue from exposed and non-exposed adult X. laevis. Using solid-phase extraction (SPE), the analytical method allows for quantification of tebuconazole at concentrations as low as 3.89 pg mL?1 in 10 mL water samples. Using bead-beating-assisted matrix solid-phase dispersion (MSPD), it was possible to quantify tebuconazole down to 0.63 pg mg?1 wet weight liver using 150 mg tissue. The deuterated analogue of tebuconazole was used as internal standard, and ensured method accuracy in the range 80.6–99.7 % for water and 68.1–109 % for tissue samples. The developed method was successfully applied in a 4-week X. laevis repeated-exposure study, revealing high levels of tebuconazole residues in adipose and liver tissue, and with experimental bioconcentration factors up to 18,244 L kg?1.  相似文献   

19.
Trehalose synthase (TreS) from Meiothermus ruber was co-aggregated with polyethyleneimine (PEI) and precipitated with polyethylene glycol (PEG), followed by cross-linking with glutaraldehyde to obtain TreS-polyethyleneimine cross-linked enzyme aggregates (termed as CLEAs-PEI-PEG). The TreS solution at 0.5 mg mL?1 protein concentration, with PEI at a mass ratio of 1:0.8 (enzyme/PEI, w/w) and 25 % (w/v) PEG concentration were found to be most adequate for the co-aggregation of TreS. CLEAs-PEI-PEG was most active with glutaraldehyde at a mass ratio of 1:0.5 (enzyme/glutaraldehyde, w/w) to cross-link the co-aggregates. The CLEAs-PEI-PEG prepared in this work had an optimum pH of 6.5 and optimum temperature of 60 °C. For lower concentrations of enzyme, using PEI could enhance the cross-linking efficiency of TreS. The thermal stability and pH tolerance of CLEAs-PEI-PEG were significantly improved. Scanning electron microscopy revealed that the main structure of CLEAs-PEI-PEG showed scaffolding morphology which was constituted by structured ball-like particles with a size of 1–2.5 μm in diameter.  相似文献   

20.
Methylisothiocyanate (MITC) is the main degradation product of metam sodium, a soil disinfectant widely used in agriculture, and is responsible for its disinfectant properties. Because MITC is highly toxic and volatile, metam sodium has to be applied in a manner that tries to reduce atmospheric emissions but still maintains adequate concentration of MITC in soil to ensure its disinfectant effect. Thus, monitoring of MITC concentrations in soil is required, and to this end sensitive, fast, and reliable analytical methods must be developed. In this work, a headspace solid-phase microextraction (HS-SPME) method was developed for MITC determination in water and soil samples using gas chromatography-tandem mass spectrometry (GC–MS–MS) with a triple-quadrupole analyzer. Two MS–MS transitions were acquired to ensure the reliable quantification and confirmation of the analyte. The method had linear behavior in the range tested (0.026–2.6 ng mL?1 in water, 1–100 ng g?1 in soil) with r 2 over 0.999. Detection limits were 0.017 ng mL?1 and 0.1 ng g?1 in water and soil, respectively. Recoveries for five replicates were in the range 76–92 %, and RSD was below 7 % at the two spiking levels tested for each matrix (0.1 and 1 ng mL?1 for water, 4 and 40 ng g?1 for soil). The potential of using multiple HS-SPME for analyzing soil samples was also investigated, and its feasibility for quantification of MITC evaluated. The developed HS-SPME method was applied to soil samples from experimental plots treated with metam sodium following good agriculture practices. Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号