首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We prove that if the physical entity S consisting of two separated physical entities S1 and S2 satisfies the axioms of orthodox quantum mechanics, then at least one of the two subentities is a classical physical entity. This theorem implies that separated quantum entities cannot be described by quantum mechanics. We formulate this theorem in an approach where physical entities are described by the set of their states, and the set of their relevant experiments. We also show that the collection of eigenstate sets forms a closure structure on the set of states, which we call the eigen-closure structure. We derive another closure structure on the set of states by means of the orthogonality relation, and call it the ortho-closure structure, and show that the main axioms of quantum mechanics can be introduced in a very general way by means of these two closure structures. We prove that for a general physical entity, and hence also for a quantum entity, the probabilities can always be explained as being due to a lack of knowledge about the interaction between the experimental apparatus and the entity.  相似文献   

2.
The theoretical scheme proposed by Aerts for describing two separated entities as a whole within a question-state structure is considered. The quoted author claims that two relevant axioms characterizing quantum physics cannot hold for a quantum, nonclassical entity consisting of two quantum separate entities. We suggest that Aerts' theory is not adequate, from the empirical point of view, to describe this situation.  相似文献   

3.
The first three of these axioms describe quantum theory and classical mechanics as statistical theories from the very beginning. With these, it can be shown in which sense a more general than the conventional measure theoretic probability theory is used in quantum theory. One gets this generalization defining transition probabilities on pairs of events (not sets of pairs) as a fundamental, not derived, concept. A comparison with standard theories of stochastic processes gives a very general formulation of the non existence of quantum theories with hidden variables. The Cartesian product of probability spaces can be given a natural algebraic structure, the structure of an orthocomplemented, orthomodular, quasi-modular, not modular, not distributive lattice, which can be compared with the quantum logic (lattice of all closed subspaces of an infinite dimensional Hubert space). It is shown how our given system of axioms suggests generalized quantum theories, especially Schrödinger equations, for phase space amplitudes.  相似文献   

4.
5.
In the Bogoliubov approach the causality principle is the basic constructive element of quantum field theory. At the same time, this principle has obvious classical interpretation. On the other hand, it is well-known Feynman statement that the double-slit experiment is “impossible, absolutely impossible to explain in classical way, and has in it the heart of quantum mechanics. We describe how taking into account of infrared singularities allows to give quite evident interpretation to double-slit experiment. And this interpretation agrees with the Bogoliubov’s causality principle.  相似文献   

6.
《Physics letters. A》1987,122(8):389-392
This paper restates the conflict between probability theory and quantum mechanics using the two-slit interference experiment. We show that standard probability theory can describe the emergence of sinusoidal fringes. What it cannot describe - and thus what is central to quantum mechanics - is destructive interference.  相似文献   

7.
We study both classical and quantum relation between two Hamiltoniansystems which are mutually connected by time-dependent canonical transformation. One is ordinary conservative system and the other istime-dependent Hamiltonian system. The quantum unitary operatorrelevant to classical canonical transformation between the two systems are obtained through rigorous evaluation. With the aid of the unitary operator, we have derived quantum states of the time-dependent Hamiltonian system through transforming the quantum states of the conservative system. The invariant operators of the two systems are presented and the relation between them are addressed. We showed that there exist numerous Hamiltonians, which gives the same classical equation of motion. Though it is impossible to distinguish the systems described by these Hamiltonians within the realm of classical mechanics, they can be distinguishable quantum mechanically.  相似文献   

8.
In this work an investigation of the uncertainty principle and the complementarity principle is carried through. A study of the physical content of these principles and their representation in the conventional Hilbert space formulation of quantum mechanics forms a natural starting point for this analysis. Thereafter is presented more general axiomatic framework for quantum mechanics, namely, a probability function formulation of the theory. In this general framework two extra axioms are stated, reflecting the ideas of the uncertainty principle and the complementarity principle, respectively. The quantal features of these axioms are explicated. The sufficiency of the state system guarantees that the observables satisfying the uncertainty principle are unbounded and noncompatible. The complementarity principle implies a non-Boolean proposition structure for the theory. Moreover, nonconstant complementary observables are always noncompatible. The uncertainty principle and the complementarity principle, as formulated in this work, are mutually independent. Some order is thus brought into the confused discussion about the interrelations of these two important principles. A comparison of the present formulations of the uncertainty principle and the complementarity principle with the Jauch formulation of the superposition principle is also given. The mutual independence of the three fundamental principles of the quantum theory is hereby revealed.  相似文献   

9.
We adopt an operational approach to quantum mechanics in which a physical system is defined by the mathematical structure of its set of states and properties. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter which corresponds with the number N of possible outcomes in an experiment. In the case N=2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N→∞ the system is classical, i.e. the experiments are deterministic and its set of properties is a Boolean lattice. For intermediate situations the change of state due to measurement is neither ‘maximal’ (i.e. quantum) nor ‘zero’ (i.e. classical). We show that two of the axioms used in Piron’s representation theorem for quantum mechanics are violated, namely the covering law and weak modularity. Next, we discuss a modified version of the model for which it is even impossible to define an orthocomplementation on the set of properties. Another interesting feature for the intermediate situations of this model is that the probability of a state transition in general not only depends on the two states involved, but also on the measurement context which induces the state transition.  相似文献   

10.
The black hole information problem provides important clues for trying to piece together a quantum theory of gravity. Discussions on this topic have generally assumed that in a consistent theory of gravity and quantum mechanics, quantum theory is unmodified. In this review, we discuss the black hole information problem in the context of generalisations of quantum theory. In this preliminary exploration, we examine black holes in the setting of generalised probabilistic theories, in which quantum theory and classical probability theory are special cases. We are able to calculate the time it takes information to escape a black hole, assuming that information is preserved. In quantum mechanics, information should escape pure state black holes after half the Hawking photons have been emitted, but we find that this get’s modified in generalisations of quantum mechanics. Likewise the black-hole mirror result of Hayden and Preskill, that information from entangled black holes can escape quickly, also get’s modified. We find that although information exits the black hole as predicted by quantum theory, it is fairly generic that it fails to appear outside the black hole at this point—something impossible in quantum theory due to the no-hiding theorem. The information is neither inside the black hole, nor outside it, but is delocalised.  相似文献   

11.
12.
We analyze the scheme of an experiment in which, by examining suppression effects of the cross correlation of photons in a beamsplitter and by preparing squeezed states, it is proven that the phase difference of photons in Fock states cannot acquire a certain value, since, otherwise, the simultaneous existence of these two effects would be impossible. We show that this reveals an intrinsic inconsistency of the nonlocal classical interpretation of quantum mechanics on the basis of nonlocal classical “realism.”  相似文献   

13.
Bell proved that quantum entanglement enables two spacelike separated parties to exhibit classically impossible correlations. Even though these correlations are stronger than anything classically achievable, they cannot be harnessed to make instantaneous (faster than light) communication possible. Yet, Popescu and Rohrlich have shown that even stronger correlations can be defined, under which instantaneous communication remains impossible. This raises the question: Why are the correlations achievable by quantum mechanics not maximal among those that preserve causality? We give a partial answer to this question by showing that slightly stronger correlations would result in a world in which communication complexity becomes trivial.  相似文献   

14.
Deformation quantization, which achieves the passage from classical mechanics to quantum mechanics by the replacement of the pointwise multiplication of functions on phase space by the star product, is a powerful tool for treating systems involving bosonic degrees of freedom, both in quantum mechanics and in quantum field theory. In the present paper we show how these methods may be naturally extended to systems involving fermions. In particular we show how supersymmetric quantum mechanics can be formulated in this approach and consider examples involving both non-relativistic and relativistic systems.  相似文献   

15.
Essential properties of semiclassical approximation for quantum mechanics are viewed as axioms of an abstract semiclassical mechanics. Its symmetry properties are discussed. Semiclassical systems being invariant under Lie groups are considered. An infinitesimal analog of group relation is written. Sufficient conditions for reconstructing semiclassical group transformations (integrability of representation of Lie algebra) are discussed. The obtained results may be used for mathematical proof of Poincare invariance of semiclassical Hamiltonian field theory and for investigation of quantum anomalies.  相似文献   

16.
17.
18.
Conventional quantum mechanics with a complex Hilbert space and the Born Rule is derived from five axioms describing experimentally observable properties of probability distributions for the outcome of measurements. Axioms I, II, III are common to quantum mechanics and hidden variable theories. Axiom IV recognizes a phenomenon, first noted by von Neumann (in Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, 1955) and independently by Turing (Teuscher and Hofstadter, Alan Turing: Life and Legacy of a Great Thinker, Springer, Berlin, 2004), in which the increase in entropy resulting from a measurement is reduced by a suitable intermediate measurement. This is shown to be impossible for local hidden variable theories. Axiom IV, together with the first three, almost suffice to deduce the conventional rules but allow some exotic, alternatives such as real or quaternionic quantum mechanics. Axiom V recognizes a property of the distribution of outcomes of random measurements on qubits which holds only in the complex Hilbert space model. It is then shown that the five axioms also imply the conventional rules for any finite dimension.  相似文献   

19.
The treatment of quantum effects in gravitational fields indicates that pure states may evolve into mixed states, and Hawking has proposed modification of the axioms of field theory which incorporate the corresponding violation of quantum mechanics. In this paper we propose a modified hamiltonian equation of motion for density matrices and use it to interpret upper bounds on the violation of quantum mechanics in different phenomenological situations. We apply our formalism to the K0-K0 system and to long baseline neutron interferometry experiments. In both cases we find upper bounds of about 2 × 10?21 GeV on contributions to the single particle “hamiltonian” which violate quantum mechanical coherence. We discuss how these limits might be improved in the future, and consider the relative significance of other successful tests of quantum mechanics. An appendix contains model estimates of the magnitude of effects violating quantum mechanics.  相似文献   

20.
A. Bohm 《Annals of Physics》2006,321(10):2299-2317
Many useful concepts for a quantum theory of scattering and decay (like Lippmann-Schwinger kets, purely outgoing boundary conditions, exponentially decaying Gamow vectors, causality) are not well defined in the mathematical frame set by the conventional (Hilbert space) axioms of quantum mechanics. Using the Lippmann-Schwinger equations as the takeoff point and aiming for a theory that unites resonances and decay, we conjecture a new axiom for quantum mechanics that distinguishes mathematically between prepared states and detected observables. Suggested by the two signs ±i? of the Lippmann-Schwinger equations, this axiom replaces the one Hilbert space of conventional quantum mechanics by two Hardy spaces. The new Hardy space theory automatically provides Gamow kets with exponential time evolution derived from the complex poles of the S-matrix. It solves the causality problem since it results in a semigroup evolution. But this semigroup brings into quantum physics a new concept of the semigroup time t = 0, a beginning of time. Its interpretation and observations are discussed in the last section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号