首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
迟明  毕炜  卢庄  宋丽娜  贾伟  张养军  钱小红  蔡耘 《色谱》2010,28(2):152-157
二氧化钛富集法作为目前使用最为广泛的金属氧化物富集磷酸肽的方法,在富集过程中常常对富含天冬氨酸和谷氨酸的酸性非磷酸化肽段存在一定的非特异性吸附作用。这些肽段与磷酸化肽段一同被富集,降低了磷酸肽富集的选择性。传统方法中使用的非特异性吸附抑制剂常会对质谱的电喷雾离子源造成污染,因而限制了其在液相色谱-质谱联用(LC-MS)系统中的应用。本研究将天冬氨酸作为一种新型的非特异性吸附抑制剂加入到二氧化钛富集体系中,并分别对3种和9种标准蛋白质酶切肽段混合物进行富集实验,同时与添加另一种非特异性吸附抑制剂——谷氨酸以及不添加任何非特异性吸附抑制剂的富集体系进行了富集效果的比较。结果表明,天冬氨酸可以有效地提高二氧化钛对磷酸肽富集的选择性。将添加天冬氨酸的二氧化钛富集体系应用于鼠肝全蛋白质磷酸肽的富集中,同样取得了很好的效果,表明天冬氨酸在复杂的生物样本的磷酸肽富集中也同样具有良好的应用前景。此外,由于天冬氨酸在反相色谱中极易被洗脱去除,从而避免了传统抑制剂对LC-MS系统离子源的污染问题。  相似文献   

2.
The utility of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) coupled with a peptide ladder sequencing method employing exopeptidase degradation for the analysis of phosphorylation site in a mono-phosphorylated peptide is investigated. MALDI-TOFMS analysis of time-dependent exopeptidase digestion using carboxypeptidase W and aminopeptidase M of the mono-phosphorylated 33-48 fragment isolated from a beta-casein tryptic digestion mixture allowed for the sequencing analysis from both the C-terminus and N-terminus. Negative ion detection MALDI-TOFMS made it possible to clearly measure the peptide ladder of mono-phosphorylated peptide by the strong negative charge localized at the phosphoric acid group. Since exopeptidase activity was suppressed by the existence of a phosphorylated amino acid residue, the termination exopeptidase degradation therefore suggested the existence of a phosphorylated amino acid residue at that site. This peptide ladder sequencing method using exopeptidases was effective for the identification of the site of a phosphorylated amino acid residue by a simple MALDI-TOFMS analysis in the negative ion detection mode.  相似文献   

3.
Electron-transfer dissociation (ETD) with supplemental activation of the doubly charged deamidated tryptic digested peptide ions allows differentiation of isoaspartic acid and aspartic acid residues using the c + 57 or z − 57 peaks. The diagnostic peak clearly localizes and characterizes the isoaspartic acid residue. Supplemental activation in ETD of the doubly charged peptide ions involves resonant excitation of the charge reduced precursor radical cations and leads to further dissociation, including extra backbone cleavages and secondary fragmentation. Supplemental activation is essential to obtain a high quality ETD spectrum (especially for doubly charged peptide ions) with sequence information. Unfortunately, the low-resolution of the ion trap mass spectrometer makes detection of the diagnostic peak, [M-60], for the aspartic acid residue difficult due to interference with side-chain loss from arginine and glutamic acid residues.  相似文献   

4.
The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes are much slower compared to amide bond cleavage, explaining why these selective bond cleavages are not observed if fragmentation is performed under mobile proton conditions. This study further affirms that fragmentation of peptide ions in the gas phase are predominantly governed by entropic effects.  相似文献   

5.
Nephrin is a type-1 transmembrane glycoprotein and the first identified principal component of the glomerular filtration barrier. Ten potential asparagine (N)-linked glycosylation sites have been predicted within the ectodomain of nephrin. However, it is not known which of these potential sites are indeed glycosylated and what type of glycans are involved. In this work, we have identified the terminal sugar residues on the ectodomain of human nephrin and utilized a straightforward and reliable mass spectrometry-based approach to selectively identify which of the ten predicted sites are glycosylated. Purified recombinant nephrin was subjected to peptide-N-glycosidase F (PNGase F) to enzymatically remove all the N-linked glycans. Since PNGase F is an amidase, the asparagine residues from which the glycans have been removed are deaminated to aspartic acid residues, resulting in an increase in the peptide mass with 1 mass unit. Following trypsin digestion, deglycosylated tryptic peptides were selectively identified by MALDI-TOF MS and their sequence was confirmed by tandem TOF/TOF. The 1 Da increase in peptide mass for each asparagine-to-aspartic acid conversion, along with preferential cleavage of the amide bond carboxyl-terminal to aspartic acid residues in peptides where the charge is immobilized by an arginine residue, was used as a diagnostic signature to identify the glycosylated peptides. Thus, nine of ten potential glycosylation sites in nephrin were experimentally proven to be modified by N-linked glycosylation.  相似文献   

6.
The identification of individual protein species within an organism's proteome has been optimised by increasing the information produced from mass spectral analysis through the chemical derivatisation of tryptic peptides and the development of new software tools. Peptide fragments are subjected to two forms of derivatisation. First, lysine residues are converted to homoarginine moieties by guanidination. This procedure has two advantages, first, it usually identifies the C-terminal amino acid of the tryptic peptide and also greatly increases the total information content of the mass spectrum by improving the signal response of C-terminal lysine fragments. Second, an Edman-type phenylthiocarbamoyl (PTC) modification is carried out on the N-terminal amino acid. The renders the first peptide bond highly susceptible to cleavage during mass spectrometry (MS) analysis and consequently allows the ready identification of the N-terminal residue. The utility of the procedure has been demonstrated by developing novel bioinformatic tools to exploit the additional mass spectral data in the identification of proteome proteins from the yeast Saccharomyces cerevisiae. With this combination of novel chemistry and bioinformatics, it should be possible to identify unambiguously any yeast protein spot or band from either two-dimensional or one-dimensional electropheretograms.  相似文献   

7.
Electrospray mass spectrometry (ESI-MS) has become the tool of choice for the study of noncovalent complexes. Our previous work has highlighted the role of phosphorylated amino acid residues in the formation of noncovalent complexes through electrostatic interaction with arginine residues’ guanidinium groups. In this study, we employ tandem mass spectrometry to investigate the gas-phase stability and dissociation pathways of these noncovalent complexes. The only difference in the three phosphopeptides tested is the nature of the phosphorylated amino acid residue. In addition the absence of acidic residues and an amidated carboxyl terminus insured that the only negative charge came from the phosphate, which allowed for the comparison of the noncovalent bond between arginine residues and each of the different phosphorylated residues. Dissociation curves were generated by plotting noncovalent complex ion intensities as a function of the nominal energy given to the noncovalent complex ion before entering the collision cell. These results showed that noncovalent complexes formed with phosphorylated tyrosine were the most stable, followed by serine and threonine, which had similar stability.  相似文献   

8.
INTRODUCTION: Non-enzymatic glycation of proteins has been implicated in various diabetic complications and age-related disorders. Proteins undergo glycation at the N-terminus or at the epsilon-amino group of lysine residues. The observation that only a fraction of all lysine residues undergo glycation indicates the role of the immediate chemical environment in the glycation reaction. Here we have constructed helical peptide models, which juxtapose lysine with potentially catalytic residues in order to probe their roles in the individual steps of the glycation reaction. RESULTS: The peptides investigated in this study are constrained to adopt helical conformations allowing residues in the i and i+4 positions to come into spatial proximity, while residues i and i+2 are far apart. The placing of aspartic acid and histidine residues at interacting positions with lysine modulates the steps involved in early peptide glycation (reversible Schiff base formation and its subsequent irreversible conversion to a ketoamine product, the Amadori rearrangement). Proximal positioning of aspartic acid or histidine with respect to the reactive lysine residue retards initial Schiff base formation. On the contrary, aspartic acid promotes catalysis of the Amadori rearrangement. Presence of the strongly basic residue arginine proximate to lysine favorably affects the pK(a) of both the lysine epsilon-amino group and the singly glycated lysine, aiding in the formation of doubly glycated species. The Amadori product also formed carboxymethyl lysine, an advanced glycation endproduct (AGE), in a time-dependent manner. CONCLUSIONS: Stereochemically defined peptide scaffolds are convenient tools for studying near neighbor effects on the reactivity of functional amino acid sidechains. The present study utilizes stereochemically defined peptide helices to effectively demonstrate that aspartic acid is an efficient catalytic residue in the Amadori arrangement. The results emphasize the structural determinants of Schiff base and Amadori product formation in the final accumulation of glycated peptides.  相似文献   

9.
Myoglobins from horse heart muscle, horse skeletal muscle and sperm whale are widely used as calibration standards or test compounds for various mass spectrometric methodologies. In all such cases reported in the literature, a molecular weight value is used (16,950.5 and 17,199, respectively) which is based on the assumption that amino acid 122 in this 153 amino-acid-long protein is asparagine, overlooking a published suggestion that it is aspartic acid instead. Since the mass assignment accuracy for matrix-assisted laser desorption mass spectrometry is reported to be +/- 0.01% and for electrospray ionization +/- 0.0025%, and error of one mass unit in approximately 17,000 would be significant. The mass-to-charge ratio of ions of the tryptic peptide encompassing amino acid 122 derived from commercially available horse heart and horse skeletal myoglobins, the apomyoglobin of the latter, and the tryptic and chymotryptic peptide of sperm whale myoglobin proved that in both proteins amino acid 122 is indeed aspartic acid, rather than asparagine. This finding was further confirmed by the collision-induced dissociation spectra of the [M + H]+ ions of the tryptic peptides from the horse myoglobins and the chymotriptic peptide from sperm whale myoglobin. Thus, the correct molecular weight of horse myoglobin is 16,951.49 and that of the sperm whale protein is 17,199.91.  相似文献   

10.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Facile cleavage C‐terminal to ornithine residues in gas phase peptides has been observed and termed the ornithine effect. Peptides containing internal or C‐terminal ornithine residues, which are formed from deguanidination of arginine in solution, were fragmented to produce either a y‐ion or water loss, respectively, and the complementary b‐ion. The fragmentation patterns of several peptides containing arginine were compared to those of the ornithine analogues. Conversion of arginine to ornithine results in a decrease of the gas phase proton affinity of the residue, thereby increasing the mobility of the ionizing proton. This alteration allows the nucleophilic amine to facilitate a neighboring group reaction to induce a cleavage of the adjacent amide bond. The selective cleavage at the ornithine residue is proposed to result from the highly favorable generation of a six‐membered lactam ring. The ornithine effect was compared with the well‐known proline and aspartic acid effects in peptide fragmentation using angiotensin II, DRVYIHPF and the ornithine analogue, DOVYIHPF. Under conditions favorable to either the aspartic acid (i.e. singly protonated peptide) or proline effect (i.e. doubly protonated peptide), the ornithine effect was consistently observed to be the more favorable fragmentation pathway. The highly selective nature of the ornithine effect opens up the possibility for conversion of arginine to ornithine residues to induce selective cleavages in polypeptide ions. Such an approach may complement strategies that seek to generate non‐selective cleavages of the related peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Collision-activated dissociation (CAD) of tryptic peptides is a cornerstone of mass spectrometry-based proteomics research. Principal component analysis of a database containing 15,000 high-resolution CAD mass spectra of gas-phase tryptic peptide dications revealed that they fall into two classes with a good separation between the classes. The main factor determining the class identity is the relative abundance of the peptide bond cleavage after the first two N-terminal residues. A possible scenario explaining this bifurcation involves trans- to cis-isomerization of the N-terminal peptide bond, which facilitates solvation of the N-terminal charge on the second backbone amide and formation of stable b(2) ions in the form of protonated diketopiperazines. Evidence supporting this scenario is derived from statistical analysis of the high-resolution CAD MS/MS database. It includes the observation of the strong deficit of a(3) ions and anomalous amino acid preferences for b(2) ion formation.  相似文献   

13.
An understanding of the gas-phase dissociation of protonated peptides within the mass spectrometer is essential for automated high-throughput protein identification. In this communication we describe a facile cleavage of the Gln-Gly peptide bond under low-collisional energy conditions. A variety of synthetic peptides have been analysed where key amino acids have been substituted within the sequence PQGPPQQGGR, which is a consensus repeat present in the tryptic peptides of acidic proline-rich protein 1 (PRP-1). The collision-induced dissociation spectra obtained from the PRP-1 tryptic peptides and the synthetic peptides indicate that facile Gln-Gly cleavage occurs when an X-Gln-Gly-Y sequence is present in a peptide, where X is any amino acid and Y any amino acid other than Gly.  相似文献   

14.
用嗜热菌酶酶促合成了一系列含门冬氨酸、谷氨酸的肽. 实验证明, 缩合反应中羧基组份中的门冬氨酸β-羧基或谷氨酸γ-羧基毋需保护. 同时也研究了邻近氨基酸残基对缩合反应的影响.  相似文献   

15.
A single-labeled peptide probe for measuring peptide phosphorylation status was developed by using a phosphate sensitive terbium chelate. The activity of Abl protein tyrosine kinase and T-cell protein Tyrosine phosphatase (TC PTP) was monitored in real time. To study the probe design in detail, variable substrate peptide sequences, where the enzyme target site was located from two to five amino acids apart from the nearest tyrosine residue, were synthesized. The maximum change observed in fluorescence intensity after phosphorylation was up to 320%, when the phosphorylated tyrosine was located two amino acids from the lysine coupled to the phosphate sensitive terbium chelate, demonstrating an excellent performance for a homogeneous assay. Also the longer distance of five amino acids between the phosphorylated tyrosine residue and terbium chelate resulted up to 260% change in fluorescence intensity.
Figure
A principle of the short peptide probe (EAI?\Y?\AAPFAK) with phosphate sensitive terbium chelate attached to the lysine side chain is described, which is proved applicable to measure in real time Abl protein tyrosine kinase and T?\cell protein tyrosine phosphatase activities. Enhancement of the terbium fluorescence could be measured upon addition of a phosphor residue to the nearby tyrosine side chain. The opposite effect could be measured, when phosphor residue is removed by protein tyrosine phosphatase.  相似文献   

16.
Because of its good biocompatibility, high surface-to-volume ratio, and distinct surface electrical properties, porous anodic alumina (PAA) membrane has been used to selectively enrich phosphopeptides from a mixture of synthetic peptides and tryptic digest product of beta-casein by a direct MALDI-TOF MS analysis. As we reported previously, PAA membrane has strong incorporation ability to the phosphate anion. Herein, we describe the application of PAA membrane as a selective sampling absorbent for phosphopeptides. The PAA membrane could enrich phosphopeptides with high efficiency and selectivity; for example, the tryptic digest product of beta-casein at a concentration as low as 4 x 10(-9) M can be satisfactorily detected. Compared to that from the nonenriching peptide mixture, the MS signal of the phosphorylated peptides enriched by the PAA membrane is remarkably improved. In addition, acidic peptides have insignificant influence on the enriching process. Results show that the adsorption of phosphate anions on the PAA membrane plays a determining role in achieving highly selective enriching capacity toward phosphopeptides. The feasibility of PAA membranes as specific absorbents for phosphopeptides is also demonstrated.  相似文献   

17.
Two high-resolution tryptic maps have been developed for recombinant tissue plasminogen activator (rt-PA) that separate the expected 51 tryptic peptides. The trypsin digestion was performed after reduction and S-carboxymethylation of the protein. The high-performance liquid chromatographic separation of the tryptic peptides used a Nova-Pak C18 (5 microns) column with a mobile phase that contained 0.1% aqueous trifluoroacetic acid (TFA) or 50 mM sodium phosphate (pH 2.85) and a linear gradient of acetonitrile. A TFA solvent system was also used for re-purification and for characterization of the peptides isolated from the phosphate-based separation. All of the isolated peptides had compositions consistent with the sequence proposed for rt-PA. The identities of the glycopeptides were confirmed by lectin chromatography on concanavalin A-Sepharose. The mixture of tryptic peptides was also treated with endo-beta-N-acetylglucosaminidase H and peptide:N-glycosidase F to locate the position of either high mannose or complex oligosaccharides. These studies demonstrated that a high mannose oligosaccharide is attached to Asn-117 while complex carbohydrate side-chains are attached to Asn-184 and Asn-448. The residue Asn-184 is the site of optional glycosylation that results in the formation of two rt-PA variants that contain either two or three oligosaccharides.  相似文献   

18.
This article discusses the features of a newly developed matrix-assisted laser desorption/ionization quadrupole/time-of-flight (MALDI-QqTOF) mass spectrometer that is useful in the analysis of phosphorylated peptides. Aliquots of beta-casein, a commonly used phosphorylated protein standard, were digested with trypsin directly on a non-porous polyurethane membrane used as sample support in MALDI-QqTOF mass spectrometry (MS) experiments. Although a complete peptide map was obtained, it was difficult to obtain sequence information for some of the tryptic fragments, in particular T1-2, which bears four phosphate groups and is thus difficult to ionize in positive mode. This article focuses on the sequencing of this particular fragment by comparing MS/MS spectra obtained using different precursor ions. These precursors associated with T1-2 were [M + H](+), [M + H](2+), and [M + H - nH(3)PO(4)](+) ions. Typically, phosphorylated ions showed facile unimolecular losses of phosphoric acid moieties, and produced limited backbone fragmentation. The abundance of [M + H](2+) ions of T1-2 in the full mass spectrum was low relative to that of [M + H](+). [M + H - 4H(3)PO(4)](+) ions as MS/MS precursors underwent backbone fragmentations, with phosphoserine residues transformed into dehydroalanines or serines. Unusual b + 18 u fragments were observed, although only for segments with previously phosphorylated serines. These partly interfered with c-ions, and were noticeable due to overlapping isotopic envelopes. It was possible to establish the sequence of phosphorylated tryptic fragment T1-2 and the location of phosphate groups using the mass of dehydroalanine residues (69 Da) and b + 18 u fragments as markers. All MS and MS/MS spectra obtained with fully phosphorylated beta-casein were compared with spectra acquired with dephosphorylated beta-casein obtained commercially. These comparisons helped assess the spectral differences caused by the presence of phosphate groups. Also, they highlighted the potential usefulness of conducting dephosphorylation directly on the probe prior to MALDI analysis in future studies.  相似文献   

19.
We report a fast and easy-to-use procedure that combines polyacrylamide gel electrophoresis with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF) and nanoelectrospray-tandem mass spectrometry (nES-MS/MS) analysis for the identification of casein components and defined phosphorylated sites. This methodology ensured identification of more than 30 phosphorylated proteins, five beta-, fifteen alpha(s1)-, ten alpha(s2)-, and four kappa-casein (CN) components, including nonallelic, differently phosphorylated, and glycosylated forms. The sugar motif covalently bound to kappa-CN was identified as chains, trisaccharide GalNAc, Gal, NeuGc, and tetrasaccharide 1GalNAc, 1Gal, 2NeuGc. Also identified was a biantennary chain made up of both chains of trisaccharide 1GalNAc, 1Gal, 1NeuGc, and tetrasaccharide 1GalNAc, 1Gal, 2NeuGc moiety on a single kappa-CN component. The phosphate group on site Ser12 of tryptic peptide 8-22 of most phosphorylated alpha(s1)-CN (11 phosphate groups) was localized and the oligosaccharide sequence of the main tryptic glycopeptides of two kappa-CN components was determined by means of MS/MS analysis.  相似文献   

20.
Amino acids residues are commonly submitted to various physicochemical modifications occurring at physiological pH and temperature. Post‐translational modifications (PTMs) require comprehensive characterization because of their major influence on protein structure and involvement in numerous in vivo process or signaling. Mass spectrometry (MS) has gradually become an analytical tool of choice to characterize PTMs; however, some modifications are still challenging because of sample faint modification levels or difficulty to separate an intact peptide from modified counterparts before their transfer to the ionization source. Here, we report the implementation of capillary zone electrophoresis coupled to electrospray ionization tandem mass spectrometry (CZE‐ESI‐MS/MS) by the intermediate of a sheathless interfacing for independent and highly sensitive characterization of asparagine deamidation (deaN) and aspartic acid isomerization (isoD). CZE selectivity regarding deaN and isoD was studied extensively using different sets of synthetic peptides based on actual tryptic peptides. Results demonstrated CZE ability to separate the unmodified peptide from modified homologous exhibiting deaN, isoD or both independently with a resolution systematically superior to 1.29. Developed CZE‐ESI‐MS/MS method was applied for the characterization of monoclonal antibodies and complex protein mixture. Conserved CZE selectivity could be demonstrated even for complex samples, and foremost results obtained showed that CZE selectivity is similar regardless of the composition of the peptide. Separation of modified peptides prior to the MS analysis allowed to characterize and estimate modification levels of the sample independently for deaN and isoD even for peptides affected by both modifications and, as a consequence, enables to distinguish the formation of l ‐aspartic acid or d ‐aspartic acid generated from deaN. Separation based on peptide modification allowed, as supported by the ESI efficiency provided by CZE‐ESI‐MS/MS properties, and enabled to characterize and estimate studied PTMs with an unprecedented sensitivity and proved the relevance of implementing an electrophoretic driven separation for MS‐based peptide analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号