首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

2.
本文研究一类由分数布朗运动驱动的一维倒向随机微分方程解的存在性与唯一性问题,在假设其生成元满足关于y Lipschitz连续,但关于z一致连续的条件下,通过应用分数布朗运动的Tanaka公式以及拟条件期望在一定条件下满足的单调性质,得到倒向随机微分方程的解的一个不等式估计,应用Gronwall不等式得到了一个关于这类方程的解的存在性与唯一性结果,推广了一些经典结果以及生成元满足一致Lipschitz条件下的由分数布朗运动驱动的倒向随机微分方程解的结果.  相似文献   

3.
In this paper, we study a backward problem for a fractional diffusion equation with nonlinear source in a bounded domain. By applying the properties of Mittag-Leffler functions and Banach fixed point theorem, we establish some results above the existence, uniqueness, and regularity of the mild solutions of the proposed problem in some suitable space. Moreover, we also show the ill-posedness of our problem in the sense of Hadamard. The regularized solution is given, and the convergence rate between the regularized solution and the exact solution is also obtained.  相似文献   

4.
In this paper, we study a backward problem for an inhomogeneous fractional diffusion equation in a bounded domain. By applying the properties of Mittag‐Leffler functions and the method of eigenvalue expansion, we establish some results about the existence, uniqueness, and regularity of the mild solutions as well as the classical solutions of the proposed problem in a weighted Hölder continuous function space.  相似文献   

5.
In this paper, we consider an inverse problem of recovering the initial value for a generalization of time-fractional diffusion equation, where the time derivative is replaced by a regularized hyper-Bessel operator. First, we investigate the existence and regularity of our terminal value problem. Then we show that the backward problem is ill-posed, and we propose a regularizing scheme using a fractional Tikhonov regularization method. We also present error estimates between the regularized solution and the exact solution using two parameter choice rules.  相似文献   

6.
分数阶微积分是一个古老而又新颖的课题,近30年来,由于在包括分形现象在内的物理、工程等诸多应用学科领域应用的拓展,激发了科研人员对分数阶微积分的巨大热情。分数阶微分方程现在已应用于分数物理学、混沌与湍流、粘弹性力学与非牛顿流体力学、高分子材料的解链、自动控制理论、化学物理、随机过程和反常扩散等许多科学领域。分数阶微分方程边值问题是非线性常微分方程理论研究中一个活跃而成果丰硕的领域。本文讨论了分数阶微分方程边值问题的一些理论,介绍了作者的著作《分数阶微分方程边值问题理论及应用》的基本内容。  相似文献   

7.
The fractional calculus approach in the constitutive relationship model of second-order fluid is introduced and the flow characteristics of the viscoelastic fluid in double cylinder rheometer are studied. First, the analytical solution of which the derivative order is 1/2 is derived with the analytical solution and the reliability of Laplace numerical inversion based on Crump algorithm for the problem is verified, then the characteristics of second-order fluid flow in the rheometer by using Crump method is analyzed. The results indicate that the more obvious the viscoelastic properties of fluid are, the more sensitive the dependence of velocity and stress on fractional derivative order is.  相似文献   

8.
Ming Yang 《Applicable analysis》2013,92(7):1508-1526
The evolution process of fractional order describes some phenomenon of anomalous diffusion and transport dynamics in complex system. The equation containing time-fractional derivative provides a suitable mathematical model for describing such a process. The backward problem for this system, which means to recover the initial state for some slow diffusion process from its present status, is very hard to solve due to the nonlocal property of fractional derivative and the irreversibility of time. For this ill-posed problem, we construct a regularizing solution using the Fourier transform method. Both the a-priori choice strategy and the a-posteriori choice strategy for the regularizing parameter are given, with the convergence analysis on the regularizing solution. Numerical implementations are presented to show the validity of the proposed scheme.  相似文献   

9.
The backward stochastic differential equations driven by both standard and fractional Brownian motions (or, in short, SFBSDE) are studied. A Wick-Itô stochastic integral for a fractional Brownian motion is adopted. The fractional Itô formula for the standard and fractional Brownian motions is provided. Introducing the concept of the quasi-conditional expectation, we study some its properties. Using the quasi-conditional expectation, we also discuss the existence and uniqueness of solutions to general SFBSDEs, where a fixed point principle is employed. Moreover, solutions to linear SFBSDEs are investigated. Finally, an explicit solution to a class of linear SFBSDEs is found.  相似文献   

10.
This paper is devoted to discuss a multidimensional backward heat conduction problem for time‐fractional diffusion equation with inhomogeneous source. This problem is ill‐posed. We use quasi‐reversibility regularization method to solve this inverse problem. Moreover, the convergence estimates between regularization solution and the exact solution are obtained under the a priori and the a posteriori choice rules. Finally, the numerical examples for one‐dimensional and two‐dimensional cases are presented to show that our method is feasible and effective.  相似文献   

11.
In this paper, we consider a backward problem for an inhomogeneous time-fractional wave equation in a general bounded domain. Such a backward problem is of practically great importance because we often do not know the initial density of substance, but we can observe the density at a positive moment. The existence and regularity for the backward problem are investigated. The backward problem is ill-posed, and we propose a regularizing scheme by using a modified regularization method. We also prove the convergence rate for the regularized solution by using some a priori regularization parameter choice rule.  相似文献   

12.
In this paper, we investigate a backward problem for a space‐fractional partial differential equation. The main purpose is to propose a modified regularization method for the inverse problem. The existence and the uniqueness for the modified regularized solution are proved. To derive the gradient of the optimization functional, the variational adjoint method is introduced, and hence, the unknown initial value is reconstructed. Finally, numerical examples are provided to show the effectiveness of the proposed algorithm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Option pricing theory is considered when the underlying asset price satisfies a stochastic differential equation which is driven by random motions generated by stable distributions. The properties of the stable distributions are discussed and their connection with the theory of fractional Brownian motion is noted. This approach attempts to generalize the classical Black–Scholes formulation, to allow for the presence of fat tails in the distribution of log prices which leads to a diffusion equation involving fractional Brownian motion. The resulting option pricing via a hedging strategy approach is independently derived by constructing a backward Kolmogorov equation for a simple trinomial model where the probabilities are assumed to satisfy a particular fractional Taylor series due to Dzherbashyan and Nersesyan. To effect this development, some knowledge of fractional integration and differentiation is required so this is briefly reviewed. Consideration is also given to a different hedging strategy approach leading to a fractional Black–Scholes equation involving the market price of risk. Modification to the model is also considered such as the impact of transaction costs. A simple example of American options is also considered.  相似文献   

14.
In the present paper, we study the initial inverse problem (backward problem) for a two-dimensional fractional differential equation with Riemann-Liouville derivative. Our model is considered in the random noise of the given data. We show that our problem is not well-posed in the sense of Hadamard. A truncated method is used to construct an approximate function for the solution (called the regularized solution). Furthermore, the error estimate of the regularized solution in L2 and Hτ norms is considered and illustrated by numerical example.  相似文献   

15.
In this paper, the deformation of the ordinary quantum mechanics is formulated based on the idea of conformable fractional calculus. Some properties of fractional calculus and fractional elementary functions are investigated. The fractional wave equation in 1 + 1 dimension and fractional version of the Lorentz transformation are discussed. Finally, the fractional quantum mechanics is formulated; infinite potential well problem, density of states for the ideal gas, and quantum harmonic oscillator problem are discussed.  相似文献   

16.
In this paper, we are concerned with the backward problem of reconstructing the initial condition of a time‐fractional diffusion equation from interior measurements. We establish uniqueness results and provide stability analysis. Our method is based on the eigenfunction expansion of the forward solution and the Tikhonov regularization to tackle the ill‐posedness issue of the underlying inverse problem. Some numerical examples are included to illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, an inverse problem for space‐fractional backward diffusion equation, which is highly ill‐posed, is considered. This problem is obtained from the classical diffusion equation by replacing the second‐order space derivative with a Riesz–Feller derivative of order α ∈ (0,2]. We show that such a problem is severely ill‐posed, and further present a simplified Tikhonov regularization method to deal with this problem. Convergence estimate is presented under a priori choice of regularization parameter. Numerical experiments are given to illustrate the accuracy and efficiency of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Traditional integer‐order partial differential equation based image denoising approach can easily lead edge and complex texture detail blur, thus its denoising effect for texture image is always not well. To solve the problem, we propose to implement a fractional partial differential equation (FPDE) based denoising model for texture image by applying a novel mathematical method—fractional calculus to image processing from the view of system evolution. Previous studies show that fractional calculus has some unique properties that it can nonlinearly enhance complex texture detail in digital image processing, which is obvious different with integer‐order differential calculus. The goal of the modeling is to overcome the problems of the existed denoising approaches by utilizing the aforementioned properties of fractional differential calculus. Using classic definition and property of fractional differential calculus, we extend integer‐order steepest descent approach to fractional field to implement fractional steepest descent approach. Then, based on the earlier fractional formulas, a FPDE based multiscale denoising model for texture image is proposed and further analyze optimal parameters value for FPDE based denoising model. The experimental results prove that the ability for preserving high‐frequency edge and complex texture information of the proposed fractional denoising model are obviously superior to traditional integral based algorithms, as for texture detail rich images. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, an $H^1$-Galerkin mixed finite element (MFE) method for solving the time fractional water wave model is presented. First-order backward Euler difference method and $L1$ formula are applied to approximate integer derivative and Caputo fractional derivative with order $1/2$, respectively, and $H^1$-Galerkin mixed finite element method is used to approximate the spatial direction. The analysis of stability for fully discrete mixed finite element scheme is made and the optimal space-time orders of convergence for two unknown variables in both $H^1$-norm and $L^2$-norm are derived. Further, some computing results for a priori analysis and numerical figures based on four changed parameters in the studied problem are given to illustrate the effectiveness of the current method  相似文献   

20.
In this paper, high-order numerical methods for time-Caputo and space-Riesz fractional Bloch-Torrey equations in one- and two-dimensional space are constructed, where the second-order backward fractional difference operator and the sixth-order fractional-compact difference operator are applied to approximate the time and space fractional derivatives, respectively. The stability and convergence of the methods are analyzed and it is shown that the convergence orders are higher than the earlier work. Finally, some numerical experiments are presented to demonstrate the effectiveness of the methods and confirm our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号