首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to improve exciton diffusion lengths is a key issue in optimizing many opto‐electronic devices based on conjugated polymers. On the basis of quantum‐chemical calculations, we investigate a strategy consisting of extending the radiative lifetime of energy carriers through incorporation along the polymer backbone of repeating units with forbidden optical transition. The results obtained for poly(p‐phenylenebutadiyne), PPE, and poly(p‐triphenylenebutadiyne), PTPE, show that the larger number of hops performed by the electronic excitations during their lifetime in PTPE is compensated by the smaller hopping length (associated with the reduced conjugation length), so that similar on‐chain diffusion lengths are predicted in both polymers.  相似文献   

2.
A series of conjugated and non-conjugated copolymers of poly(2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene-co-styrene) were synthesized via a typical chlorine precursor route. The obtained copolymers were characterized by FTIR spectra, UV-Vis spectra, 1H NMR and GPC. The results obtained indicated that the introduction of non-conjugated PS segments in MEH-PPV led to the interruption of conjugation structure and shortened the effective conjugated length, by which the optical properties of the conjugated polymer can be adjusted.  相似文献   

3.
We report a joint experimental and theoretical investigation of exciton diffusion in phenyl‐cored thiophene dendrimers. Experimental exciton diffusion lengths of the dendrimers vary between 8 and 17 nm, increasing with the size of the dendrimer. A theoretical methodology is developed to estimate exciton diffusion lengths for conjugated small molecules in a simulated amorphous film. The theoretical approach exploits Fermi’s Golden Rule to estimate the energy transfer rates for a large ensemble of bimolecular complexes in random relative orientations. Utilization of Poisson’s equation in the evaluation of the Coulomb integral leads to very efficient calculation of excitonic couplings between the donor and the acceptor chromophores. Electronic coupling calculations with delocalized transition densities revealed efficient coupling pathways in the bulk of the material, but do not result in strong couplings between the chromophores which are calculated for more localized transition densities. The molecular structures of dendrimers seem to be playing a significant role in the magnitude of electronic coupling between chromophores. Simulated diffusion lengths correlate well with the experimental data. The chemical structure of the chromophore, the shape of the transition densities and the exciton lifetime are found to be the most important factors in determining the size of the exciton diffusion length in amorphous films of conjugated materials.  相似文献   

4.
Electrochemical polymerization of a series of N‐alkyl‐2,7‐di(2‐thienyl)carbazoles in acetonitrile was performed to obtain conjugated polymers with fluorescence. Scanning electron and atomic force microscopies revealed that the surface morphology of the polymer films significantly depends on the alkyl chain lengths of the polymers. Particularly, a homopolymer bearing hexyl groups and copolymers with an average alkyl chain length of six carbon atoms show nanofiber morphology. The polymer nanofibers were stacked on a substrate electrode. The fluorescence of the polymer nanofiber film was tunable with application of voltage, with good repeatability. The X‐ray diffraction pattern of the fibers showed the structural order. The polymer nanofibers thus prepared showed an electrochemically driven change in polarized photoluminescence.  相似文献   

5.
Direct arylation polymerization between derivatives of dibromodiketopyrrolopyrrole (DPP) and thienoisoindigo (TIIG) resulted in two π‐conjugated copolymers with average molecular weights up to 24.0 kDa and bandgaps as low as 0.8 eV. The structural analysis of the obtained two polymers revealed well‐defined alternating conjugation backbones without obvious structural defects. The introduction of hexyl‐group in the β‐position of thiophene rings in the DPP units not only reduces the bandgap of conjugated polymer compared to a similar polymer containing bare‐thiophene flanked DPP but also affects polymer morphology in thin films. P‐type charge‐transport characteristics were observed for two polymers in organic field‐effect transistors with comparable hole mobilities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3205–3213  相似文献   

6.
A new aromatic host polymer poly{[1,4‐bis(9‐decylcarbazole‐3‐yl)‐2,3,5,6‐tetrafluorobenzene‐3,3′‐diyl]‐alt‐[N‐methylisatin‐2‐one‐3,3‐diyl]} (PICzFB) containing carbazole–tetrafluorinebeneze–carbazole moiety in the π‐conjugated interrupted polymer backbone was synthesized by superacid‐catalyzed metal‐free polyhydroxyalkylation. The resulted copolymer PICzFB showed a comparatively wide band gap up to 3.32 eV and high triplet energy (ET) of 2.73 eV due to confined conjugation by the δ? C bond interrupted polymer backbone. Blue and green light‐emitting devices with PICzFB as host, FIrpic and Ir(mppy)3 as phosphorescent dopants showed the maximum luminous efficiencies of 5.0 and 27.6 cd/A, respectively. The results suggested that the strategy of incorporating bipolar unit into the π‐conjugated interrupted polymer backbone can be a promising approach to obtain host polymer with high triplet level for solution‐processed blue and green phosphorescent polymer light‐emitting diodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1037–1046  相似文献   

7.
A facile synthetic approach of conjugated rod‐coil block copolymers with poly(para‐phenylene) as the rod block and polystyrene or polyethylene glycol as the coil block was developed. The block copolymers were synthesized through a TEMPO‐mediated radical polymerization of 3,5‐cyclohexadiene‐1,2‐diol‐derived monomers (diacetate, dibenzonate, and dicarbonate), followed by thermal aromatization of the polymer precursor. The living character of the polymerization and the structure of the copolymers were studied by NMR, GPC, TGA, and UV–vis spectroscopy. The average conjugation lengths of the copolymers were calculated according to their maxima in UV–vis spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 800–808, 2007  相似文献   

8.
Condensation copolymerization reactions of carbazole 3,6‐diboronate with 4,7‐bis(5‐bromo‐2‐thienyl)‐2,1,3‐benzothiadiazole (DTBT) only produce low‐molecular‐weight donor (D)‐π‐acceptor (A) copolymers. High‐molecular‐weight copolymers for use in optoelectronic devices are necessary for achieving extended π‐conjugation and for controlling the copolymer processibility. To elucidate the cause of the persistently low molecular weight, we synthesized three 3,6‐carbazole‐based D‐A copolymers using copolymerizations of N‐9′‐heptadecanyl‐3,6‐carbazole with DTBT, N‐9′{2‐[2‐(2‐methoxy‐ethoxy)‐ethoxy]‐ethyl}‐3,‐6‐carbazole with DTBT, and N‐9′‐heptadecanyl‐3,6‐carbazole with alkyl‐substituted DTBT. We investigated several parameters for their influence on molecular copolymer weight, including the conformation of the chain during growth, the solubility of the monomers, and the dihedral angles between the donor and acceptor units. Size exclusion chromatography, UV–vis absorption spectroscopy, and computational studies revealed that the low molecular weights of 3,6‐carbazole‐based D‐A copolymers resulted from conjugation breaks and the resulting high coplanarity, which led to strong interactions between polymer chains. These interactions limited formation of high‐molecular‐weight‐copolymers during copolymerization. The strong intermolecular interactions of the 3,6‐carbazole moiety were exploited by incorporating 3,6‐carbazole units into poly[9′,9′‐dioctyl‐2,7‐flourene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] prepared from 9′,9′‐dioctyl‐2,7‐flourene and DTBT. Interestingly, the number average molecular weight increased gradually with increasing 2,7‐fluorene monomer content but the number of conjugation breaks was a range of 6–7. The hole mobilities of the copolymers were studied for comparison purposes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
The photoconductivity of poly(N-acryloylcarbazole) (PACz), with the pendant carbazolyl group only a short distance from the skeletal chain of the polymer but separated from it by a carbonyl group, is investigated and compared with that of poly(N-vinylcarbazole) (PVCz). There is no significant difference between PACz and PVCz in the temperature, light intensity, and spectral dependences of the photocurrent. The photoconductivity of PACz, however, is much inferior to that of PVCz and even to that of poly(N-carbazolylethylvinylether), a representative vinyl polymer with pendant carbazolyl groups far from the skeletal chain. The poor photoconductivity of PACz is discussed in relation to the intensity of the electronic interaction between neighboring carbazolyl groups in the polymer chain and to singlet exciton migration. It is attributed mainly to an extremely low efficiency of extrinsic carrier generation via a singlet exciton, which is due to the poor electron-donating character and the extremely short lifetime of a singlet exciton in the presence of the carbonyl group.  相似文献   

10.
Racemic and optically active 3-pyrrolidinecarboxylic acids (β-proline) were synthesized, and their polymers, poly[(RS)-β-proline] and poly[(R)-β-proline], were prepared by the polycondensation reaction of the p-nitrophenyl esters. Model compounds, N-cyclopentylcarboxylic acid pyrrolidide and N-cyclopentylcarbonyl-(R)-3-pyrrolidinecarboxylic acid pyrrolidide, were synthesized to elucidate the conformation of the polymer. The solution properties of poly[(R)-β-proline] and the model compounds were investigated by means of circular dichroism (CD) and NMR spectroscopy. The spectral patterns of the polymer and model compounds were similar in various solvents. Poly[(R)-β-proline] and poly[(RS)-β-proline] showed identical NMR spectra. These results suggest that poly[(R)-β-proline] may exist in a random conformation consisting of mixtures of cis and trans amide bonds. The conformational study of cyclopentanecarboxylic acid pyrrolidide by NMR spectroscopy with a shift reagent, Eu(fod)3, in CDCl3 implied that the plane containing the amide group bisects the cyclopentane ring. This suggests that each amide plane in the polymer in chloroform may also bisect the pyrrolidine ring.  相似文献   

11.
Understanding triplet exciton diffusion between organic thermally activated delayed fluorescence (TADF) molecules is a challenge due to the unique cycling between singlet and triplet states in these molecules. Although prompt emission quenching allows the singlet exciton diffusion properties to be determined, analogous analysis of the delayed emission quenching does not yield accurate estimations of the triplet diffusion length (because the diffusion of singlet excitons regenerated after reverse-intersystem crossing needs to be accounted for). Herein, we demonstrate how singlet and triplet diffusion lengths can be accurately determined from accessible experimental data, namely the integral prompt and delayed fluorescence. In the benchmark materials 4CzIPN and 4TCzBN, we show that the singlet diffusion lengths are (9.1 ± 0.2) and (12.8 ± 0.3) nm, whereas the triplet diffusion lengths are negligible, and certainly less than 1.0 and 1.2 nm, respectively. Theory confirms that the lack of overlap between the shielded lowest unoccupied molecular orbitals (LUMOs) hinders triplet motion between TADF chromophores in such molecular architectures. Although this cause for the suppression of triplet motion does not occur in molecular architectures that rely on electron resonance effects (e.g. DiKTa), we find that triplet diffusion is still negligible when such molecules are dispersed in a matrix material at a concentration sufficiently low to suppress aggregation. The novel and accurate method of understanding triplet diffusion in TADF molecules will allow accurate physical modeling of OLED emitter layers (especially those based on TADF donors and fluorescent acceptors).

A method for measuring triplet diffusion between TADF molecules is presented, and implications of limited triplet diffusion for OLEDs discussed.  相似文献   

12.
The ability of conjugated polymers to function as electronic materials is dependent on the efficient transport of excitons along the polymer chain. Generally, the photophysics of the chromophore monomer dictate the excited state behavior of the corresponding conjugated polymers. Different molecular structures are examined to study the role of excited state lifetimes and molecular conformations on energy transfer. The incorporation of rigid, three‐dimensional scaffolds, such as iptycenes and cyclophanes, can encourage an oblique packing of the chromophore units of a conjugated polymer, thus allowing the formation of electronically‐coupled aggregates that retain high quantum yields of emission. Rigid iptycene scaffolds also act as excellent structural directors that encourage complete solvation of PPEs in a liquid crystal (LC) solvent. LC‐PPE mixtures display both an enhanced conformational alignment of polymer chains and extended effective conjugation lengths relative to isotropic solutions, which leads to enhanced energy transfer. Facile exciton migration in poly(p‐phenylene ethynylene)s (PPEs) allows energy absorbed over large areas to be funneled into traps created by the binding of analytes, resulting in signal amplification in sensory devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
Diphenylaminobiphenylated stryl based alternating copolymers with phenyl or fluorene, which were expected to have a terphenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant and a phenyl/fluorene/phenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant, were synthesized by a Suzuki coupling reaction. The obtained copolymers were confirmed with various types of spectroscopy. The alternating copolymers showed good hole‐injection properties because of their low oxidation potential and good solubility and high thermal stability with a high glass‐transition temperature. The alternating copolymers showed blue emissions because of the adjusted conjugation lengths; the maximum wavelength was 460 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} and 487 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl] vinylene‐alt‐9,9‐dihexylfluorene}. The maximum brightness of indium tin oxide/poly(3,4‐ethylene dioxythiophene)/polymer/LiF/Al devices with poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} or poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐9,9‐dihexylfluorene} as the emitting layer was 250 or 1000 cd/m2, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 341–347, 2007  相似文献   

14.
Two new acrylate monomers containing different long π-election conjugation bridge structure, 4′-[(N,N-diethylacrylate) amino], 4-(pyridine-4-vinyl) stilbene (DAS) and 4′-[(N,N-diethylacrylate) amino], 4-(pyridine-4-vinyl) azobenzene (DAA), were synthesized and their copolymers with methyl methacrylate (MMA) were prepared by free radical polymerization method. Their structures and properties of these copolymers were characterized and evaluated by FTIR, 1H-NMR, UV spectra, GPC and Z-scan technique with 8 ns pulses at 532 nm wavelength. The relationship between their structures and properties was investigated. The results show that the structure of these resultant copolymers can be effectively tuned by simply varying the feed ratio and these copolymers exhibit good solubility and large third-order nonlinear optical properties. The large third-order nonlinear optical properties are mainly attributed to the substituted NLO-chromophore with long D-π-A conjugated structure. Simultaneously, it is found that poly (DAA-co-MMA) with N=N double bond as conjugation bridge has larger third-order nonlinear optical susceptibility than poly (DAS-co-MMA) with C=C double bond as conjugation bridge owing to more effective π electron conjugation effect.  相似文献   

15.
The different effects on the photodegradation‐induced photoluminescence (PL) of π‐conjugated polymeric thin films upon the doping of Ir(III) containing triplet emitters in ambient conditions at room temperature were investigated. In this study, we prepared spin‐coated thin films using three different polymer matrices including poly(9‐vinylcarbazole) (PVK), poly[9,9‐bis(2‐ethylhexyl)fluorene‐2,7‐diyl] (PF2/6), and poly[2‐(5′‐cyano‐5′‐methyl‐hexyloxy)‐1,4‐phenylene] (CNPPP) derivatives doped with Ir(III) containing triplet emitters: Ir(III) bis[(4,6‐fluorophenyl)‐pyridinato‐N,C2′] picolinate (FIrpic), or Ir(III)fac‐tris(2‐phenylpyridine) (Ir(ppy)3), or Ir(III)bis(2‐(2′‐benzothienyl) pyridinato‐N‐acetylacetonate) (Ir(btp)2acac). Using the doped films, and their neat films, on quartz substrates, the UV‐Visible absorption (UV‐Vis) and PL spectra were recorded under continuous illumination with the excitation wavelengths at the absorption maxima of the corresponding matrix polymers. The dopant effects on the photodegradation‐induced PL were extracted from the kinetic data obtained from the doped films by subtracting the mutual degradation kinetics of their corresponding neat films. The obtained dopant effects show a strong correlation between the photo‐induced PL degradation and the exciton migration behaviors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2395–2403, 2008  相似文献   

16.
2-Methyl-5-vinylpyridine-N-oxide, 4-vinylquinoline-N-oxide. 9-vinylacridine-N-oxide, p-N,N-dimethylaminostyrene-N-oxide units were introduced in polymeric chains as homopolymers or/and as styrene copolymers to study their photocrosslinking. The method used for characterization of photocrosslinked films was a “photoresist test” described in Part I of this series. The photosensitivity of the different chromophores bound to the different polymer has also been studied by UV, IR, and fluorescence spectrophotometries. The use of aromatic amine N-oxide groups in polymers seems to be a general means to produce their photocrosslinking by radical reactions. Among the different polymeric materials prepared, 4-vinylpyridine-N-oxide and 4-vinylquinoline-N-oxide are the most photosensitive.  相似文献   

17.
Two new two‐dimensional conjugated copolymers that contain diketopyrrolopyrrole and thiophene with different π conjugation lengths as side chains, called PDPPMTD and PDPPBTD , were designed and synthesized for use in polymer solar cells (PSCs). The resulting copolymers in the thin film state displayed broad absorption in the visible range with an absorption edge at over 1000 nm, and both had relatively low‐lying HOMO levels, at ?5.20 and ?5.18 eV for PDPPMTD and PDPPBTD , respectively. The power conversion efficiency (PCE) of the PSC that was based on PDPPBTD /PC61BM (w/w = 1:2) reached 4.10 % with a Jsc of 14.5 mA/cm2, a Voc of 0.59 V and an FF of 48%, while PDPPMTD /PC61BM (w/w = 1:2) had a PCE of 2.96% with a Jsc of 12.6 mA/cm2, a Voc of 0.60 V, and an FF of 39%. These results indicate that subtle tuning of the chemical structure can significantly influence Jsc and FF. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2878–2889  相似文献   

18.
Efficient energy migration in conjugated polymers is critical to their performance in photovoltaic, display, and sensor devices. The ability to precisely control the polymer conformation is a key issue for the experimental investigations and deeper understanding of the nature of this process. We make use of specially designed iptycene-containing poly(p-phenylene ethynylene)s that display chain-extended conformations when dissolved in nematic liquid crystalline solvents. In these solutions, the polymers show a substantial enhancement in the intrachain exciton migration rate, which is attributed to their increased conjugation length and better alignment. The organizational enhancement of the energy transfer efficiency, as determined by site-selective emission from lower energy traps at the polymer termini, is accompanied by a significant increase of the fluorescence quantum yield. The liquid crystalline phase is a necessary requirement for these phenomena to occur, and when the temperature was increased above the nematic-isotropic transition, we observed a dramatic reduction of the energy transfer efficiency and fluorescence quantum yield. The ability to improve the exciton migration efficiency through precise control of the polymer structure with liquid crystalline solutions demonstrates the importance of a polymer's conformation for energy transfer, and provides a way to improve the energy transporting performance of conjugated polymers.  相似文献   

19.
With their bent π-systems, cyclic conjugation and inherent cavities, conjugated nanohoops are attractive for organic electronics applications. For ease of processing and morphological stability, an incorporation into polymers is desirable, but to date was hampered with few exceptions by synthetic difficulties. We herein present a unique strategy for the synthesis of conjugated nanohoop polymers using a dibenzo[a,e]pentalene (DBP) as central connector. We demonstrate this versatility by synthesizing three electronically diverse copolymers with dithienyldiketo(pyrrolopyrrol), fluorene and carbazole comonomers, and report the first donor-acceptor nanohoop polymer. Optoelectronic investigations reveal the prevalence of cyclic or linear conjugation, depending on the comonomer unit, and ambipolar electrochemical properties through the antiaromatic character of the DBP units. As the first report on using conjugated nanohoops for charge storage as positive electrode materials, we show a significant improvement in battery performance in a nanohoop-containing polymer compared to an equivalent nanohoop-free reference polymer. We believe this study will pave the way for the synthesis of a diverse range of nanohoop polymers and further stimulate their exploration for charge storage in batteries.  相似文献   

20.
A series of fluorinated block copolymers with different fluorinated block lengths and compositions were synthesized by atom transfer radical polymerization (ATRP), and then the block copolymers containing sulfonic groups with various sulfonation levels were successfully prepared further via a sulfonation reaction. These well‐defined block copolymers were characterized by means of Fourier transform infrared (FTIR), 1H‐nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The surface activities of the fluorinated block copolymers containing sulfonic groups in N‐methyl pyrrolidone solution and the surface properties of the films prepared from such a solution were examined, and the experimental results showed that the fluorinated block copolymers exhibited a high surface activity in solution and quite a low solid surface energy of films, even though they contain hydrophilic sulfonic groups. The critical surface tensions of these copolymers were estimated and were comparable to that of polytetrafluoroethylene. Even more interestingly, the surface activities of the block copolymers containing sulfonic groups or sodium sulfonate groups in aqueous solution were also measured. It was found that the surface activity in aqueous solution was weaker than that in N‐methyl pyrrolidone solution and depended on both the length of the fluorinated block and the sulfonation level of the block copolymers. The surface properties of the films prepared from the block copolymers in aqueous solution were tested, and most of these films exhibited a hydrophilic surface property. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4809–4819, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号