首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, an efficient and accurate numerical method is presented for solving two types of fractional partial differential equations. The fractional derivative is described in the Caputo sense. Our approach is based on Bernoulli wavelets collocation techniques together with the fractional integral operator, described in the Riemann‐Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations, which greatly simplifies the problem. By using Newton's iterative method, this system is solved and the solution of fractional partial differential equations is achieved. Some results concerning the error analysis are obtained. The validity and applicability of the method are demonstrated by solving four numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions much easier.  相似文献   

3.
To compute long term integrations for the pantograph differential equation with proportional delay qt, 0 < q ⩽ 1: y′(t) = ay(t) + by(qt) + f(t), y(0) = y 0, we offer two kinds of numerical methods using special mesh distributions, that is, a rational approximant with ‘quasi-uniform meshes’ (see E. Ishiwata and Y. Muroya [Appl. Math. Comput., 2007, 187: 741-747]) and a Gauss collocation method with ‘quasi-constrained meshes’. If we apply these meshes to rational approximant and Gauss collocation method, respectively, then we obtain useful numerical methods of order p * = 2m for computing long term integrations. Numerical investigations for these methods are also presented.   相似文献   

4.
This paper is concerned with the numerical solution of delay integro‐differential equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Taylor polynomials for the numerical solution of delay integro‐differential equations. It is shown that this method is convergent. Numerical illustrations confirm our theoretical analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The main purpose of this work is to provide a numerical approach for the delay partial differential equations based on a spectral collocation approach. In this research, a rigorous error analysis for the proposed method is provided. The effectiveness of this approach is illustrated by numerical experiments on two delay partial differential equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, a diagonal splitting idea is presented for solving linear systems of ordinary differential equations. The resulting methods are specially efficient for solving systems which have arisen from semidiscretization of parabolic partial differential equations (PDEs). Unconditional stability of methods for heat equation and advection–diffusion equation is shown in maximum norm. Generalization of the methods in higher dimensions is discussed. Some illustrative examples are presented to show efficiency of the new methods.  相似文献   

7.
The Chebyshev‐Legendre spectral method for the two‐dimensional vorticity equations is considered. The Legendre Galerkin Chebyshev collocation method is used with the Chebyshev‐Gauss collocation points. The numerical analysis results under the L2‐norm for the Chebyshev‐Legendre method of one‐dimensional case are generalized into that of the two‐dimensional case. The stability and optimal order convergence of the method are proved. Numerical results are given. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

8.
A high order modified nodal bi-cubic spline collocation method is proposed for numerical solution of second-order elliptic partial differential equation subject to Dirichlet boundary conditions. The approximation is defined on a square mesh stencil using nine grid points. The solution of the method exists and is unique. Convergence analysis has been presented. Moreover, the superconvergent phenomena can be seen in proposed one step method. The numerical results clearly exhibit the superiority of the new approximation, in terms of both accuracy and computational efficiency.  相似文献   

9.
A Legendre Galerkin–Chebyshev collocation method for Burgers-likeequations is developed. This method is based on the Legendre–Galerkinvariational form, but the nonlinear term and the right-handterm are treated by Chebyshev–Gauss interpolation. Errorestimates of the semi-discrete scheme and the fully discretescheme are given in the L2-norm. Numerical results indicatethat our method is as stable and accurate as the standard Legendrecollocation method, and as efficient and easy to implement asthe standard Chebyshev collocation method.  相似文献   

10.
This paper extends the waveform relaxation method to stochastic differential equations with constant delay terms, gives sufficient conditions for the mean square convergence of the method. A lot of attention is paid to the rate of convergence of the method. The conditions of the superlinear convergence for a special case, which bases on the special splitting functions, are given. The theory is applied to a one-dimensional model problem and checked against results obtained by numerical experiments.  相似文献   

11.
12.
A Legendre–Gauss–Lobatto spectral collocation method is introduced for the numerical solutions of a class of nonlinear delay differential equations. An efficient algorithm is designed for the single‐step scheme and applied to the multiple‐domain case. As a theoretical result, we obtain a general convergence theorem for the single‐step case. Numerical results show that the suggested algorithm enjoys high‐order accuracy both in time and in the delayed argument and can be implemented in a robust and efficient manner. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this note we propose a method for the integration of y'(t) = f(t, y(t), y(rt)), 0 t tf y(0) = y0, where 0 < r < 1, by a superconvengent s-stage continuousRK method of discrete global order p and continuous uniformorder q < p – 1 for the approximation of the delayedterm y(rt). We prove that, although the maximum attainable orderof the method on an arbitrary mesh is q' = min{p, q + 1}, byusing a quasi-geometric mesh, introduced by Bellen et al. (1997,Appl. Numer. Math. 24, 1997, 279–293), the optimal accuracyorder p is preserved.  相似文献   

14.
In this paper, a collocation method is presented to find the approximate solution of high‐order linear complex differential equations in rectangular domain. By using collocation points defined in a rectangular domain and the Bessel polynomials, this method transforms the linear complex differential equations into a matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Bessel coefficients. The proposed method gives the analytic solution when the exact solutions are polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and the comparisons are made with existing results. The results show the efficiency and accuracy of the present work. All of the numerical computations have been performed on a computer using a program written in MATLAB v7.6.0 (R2008a). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
We have developed a new numerical method based on Haar wavelet (HW) in this article for the numerical solution (NS) of one- and two-dimensional hyperbolic Telegraph equations (HTEs). The proposed technique is utilized for one- and two-dimensional linear and nonlinear problems, which shows its advantage over other existing numerical methods. In this technique, we approximated both space and temporal derivatives by the truncated Haar series. The algorithm of the method is simple and we can implement easily in any other programming language. The technique is tested on some linear and nonlinear examples from literature. The maximum absolute errors (MAEs), root mean square errors (RMSEs), and computational convergence rate are calculated for different number of collocation points (CPs) and also some 3D graphs are also drawn. The results show that the proposed technique is simply applicable and accurate.  相似文献   

16.
Abstract

This paper studies the numerical solution of fractional stochastic delay differential equations driven by Brownian motion. The proposed algorithm is based on linear B-spline interpolation. The convergence and the numerical performance of the method are analyzed. The technique is adopted for determining the statistical indicators of stochastic responses of fractional Langevin and Mackey-Glass models with stochastic excitations.  相似文献   

17.
A collocation method to find an approximate solution of higher‐order linear ordinary differential equation with variable coefficients under the mixed conditions is proposed. This method is based on the rational Chebyshev (RC) Tau method and Taylor‐Chebyshev collocation methods. The solution is obtained in terms of RC functions. Also, illustrative examples are included to demonstrate the validity and applicability of the technique, and performed on the computer using a program written in maple9. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1130–1142, 2011  相似文献   

18.
19.
In this paper, we apply the Jacobi collocation method for solving nonlinear fractional differential equations with integral boundary conditions. Due to existence of integral boundary conditions, after reformulation of this equation in the integral form, the method is proposed for solving the obtained integral equation. Also, the convergence and stability analysis of the proposed method are studied in two main theorems. Furthermore, the optimum degree of convergence in the L2 norm is obtained for this method. Furthermore, some numerical examples are presented in order to illustrate the performance of the presented method. Finally, an application of the model in control theory is introduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
提出了一种新的求解第二类线性Volterra型积分方程的Chebyshev谱配置方法.该方法分别对方程中积分部分的核函数和未知函数在Chebyshev-Gauss-Lobatto点上进行插值,通过Chebyshev-Legendre变换,把插值多项式表示成Legendre级数形式,从而将积分转换为内积的形式,再利用Legendre多项式的正交性进行计算.利用Chebyshev插值算子在不带权范数意义下的逼近结果,对该方法在理论上给出了L∞范数意义下的误差估计,并通过数值算例验证了算法的有效性和理论分析的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号