首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
In this paper, Coupled Fractional Reduced Differential Transform method is extended to apply to the generalized time-fractional two-component evolutionary system of order 2. By using this method, the solutions in the form of a generalized Taylor series are obtained. The graphics of numerical solutions together with the error analysis demonstrate that the present method is effective and accurate for obtaining approximate solutions of fractional coupled equations. Moreover, the results also indicate that the solutions obtained by residual power series method in previous literature (M. Alquran, Analytical solution of time-fractional two-component evolutionary system of order 2 by residual power series method, J. Appl. Anal. Comput.,5(2015)(4), 589-599.) contain errors.  相似文献   

2.
3.
This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.  相似文献   

4.
In this paper, the fractional variational iteration method (FVIM) was applied to obtain the approximate solutions of time-fractional Swift–Hohenberg (S–H) equation with modified Riemann–Liouville derivative. A new application of fractional variational iteration method (FVIM) was extended to derive analytical solutions in the form of a series for these equations. Numerical results showed the FVIM is powerful, reliable and effective method when applied strongly nonlinear equations with modified Riemann–Liouville derivative.  相似文献   

5.
In this paper we investigate the Cauchy problem for a fractional diffusion equation and the time-fractional derivative is taken in the Caputo type sense. We give a representation of solutions under Fourier series and analyze initial value problems for the semi-linear fractional diffusion equation with a memory term. We also discuss the stability of the fractional derivative order for the time under some assumptions on the input data. Our key idea is to use Mittag-Leffler functions, the Banach fixed point theorem, and some Sobolev embeddings.  相似文献   

6.
The aim of this paper is to present an efficient and reliable treatment of the homotopy perturbation method (HPM) for two dimensional time-fractional wave equation (TFWE) with the boundary conditions. The fractional derivative is described in the Caputo sense. The initial approximation can be determined by imposing the boundary conditions. The method provides approximate solutions in the form of convergent series with easily computable components. The obtained results shown that the technique introduced here is efficient and easy to implement.  相似文献   

7.
This paper presents an efficient numerical algorithm for approximate solutions of a fractional population growth model in a closed system. The time-fractional derivative is considered in the Caputo sense. The algorithm is based on Adomian’s decomposition approach and the solutions are calculated in the form of a convergent series with easily computable components. Then the Padé approximants are effectively used in the analysis to capture the essential behavior of the population u(t) of identical individuals.  相似文献   

8.
In this article, a novel numerical method is proposed for nonlinear partial differential equations with space- and time-fractional derivatives. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor's formula. The fractional derivatives are considered in the Caputo sense. Several illustrative examples are given to demonstrate the effectiveness of the present method. Results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. Results also show that the numerical scheme is very effective and convenient for solving nonlinear partial differential equations of fractional order.  相似文献   

9.
The aim of this paper is to present a new numerical method for solving a wide class of fractional partial differential equations (FPDEs) such as wave-diffusion equations, modified anomalous fractional sub-diffusion equations, time-fractional telegraph equations. The proposed method is based on the Fourier series expansion along the spatial coordinate which transforms the original equation into a sequence of multi-term fractional ordinary differential equations (ODEs). These fractional equations are solved by the use of a new efficient numerical technique – the backward substitution method. The numerical examples confirm the high accuracy and efficiency of the proposed numerical scheme in solving FPDEs with variable in time coefficients.  相似文献   

10.
对于conformable型分数阶的Airy方程和Telegraph方程,利用泛函分离变量法和广义分离变量法求解了它们的精确解.对于无黏的conformable型分数阶Burgers方程,利用广义分离变量法求解了它的精确解.事实证明,分离变量法是一种简洁直接的求解方法.此外,还借助Maple软件绘制了一些解的三维图像.  相似文献   

11.
In this present investigation, we proposed a reliable and new algorithm for solving time-fractional differential models arising from physics and engineering. This algorithm employs the Shehu transform method, and then nonlinearity term is decomposed. We apply the algorithm to solve many models of practical importance and the outcomes show that the method is efficient, precise, and easy to use. Closed form solutions are obtained in many cases, and exact solutions are obtained in some special cases. Furthermore, solution profiles are presented to show the behavior of the obtained results in other to better understand the effect of the fractional order.  相似文献   

12.
In this paper, we applied relatively new analytical techniques, the homotopy analysis method (HAM) and the Adomian’s decomposition method (ADM) for solving time-fractional Fornberg–Whitham equation. The homotopy analysis method contains the auxiliary parameter, which provides us with a simple way to adjust and control the convergence region of solution series. The fractional derivatives are described in the Caputo sense. A comparison is made the between HAM and ADM results. The present methods performs extremely well in terms of efficiency and simplicity. Numerical results for different particular cases of the problem are presented.  相似文献   

13.
In this work, we study the solutions of some fractional higher-order equations. Special cases in which time-fractional derivatives take integer values are also examined and the explicit solutions are presented. Such solutions can be expressed by means of the transition laws of stable subordinators and their inverse processes. In particular, we establish connections between fractional and higher-order equations.  相似文献   

14.
In the current paper, based on fractional complex transformation, the GG2-expansion method which is used to solve differential equations of integer order is developed for finding exact solutions of nonlinear fractional differential equations with Jumarie's modified Riemann-Liouville derivative. And then, time-fractional Burgers equation and space-fractional coupled Konopelchenko-Dubrovsky equations are provided to show that this method is effective in solving nonlinear fractional differential equations.  相似文献   

15.
In this research, we present a new approach based on variational iteration method for solving nonlinear time-fractional partial differential equations in large domains. The convergence of the method is shown with the aid of Banach fixed point theorem. The maximum error bound is specified. The optimal value of auxiliary parameter is obtained by use of residual error function. The fractional derivatives are taken in the Caputo sense. Numerical examples that involve the time-fractional Burgers equation, the time-fractional fifth-order Korteweg–de Vries equation and the time-fractional Fornberg–Whitham equation are examined to show the appropriate properties of the method. The results reveal that a new approach is very effective and convenient.  相似文献   

16.
In this paper, the fractional derivatives in the sense of modified Riemann–Liouville derivative and the first integral method are employed for constructing the exact solutions of nonlinear time-fractional partial differential equations. The power of this manageable method is presented by applying it to several examples. This approach can also be applied to other nonlinear fractional differential equations.  相似文献   

17.
In this paper, a scheme is developed to study numerical solution of the space- and time-fractional Burgers equations with initial conditions by the variational iteration method (VIM). The exact and numerical solutions obtained by the variational iteration method are compared with that obtained by Adomian decomposition method (ADM). The results show that the variational iteration method is much easier, more convenient, and more stable and efficient than Adomian decomposition method. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.  相似文献   

18.
This paper presents analytical-approximate solutions of the time-fractional Cahn-Hilliard (TFCH) equations of fourth and sixth order using the new iterative method (NIM) and q-homotopy analysis method (q-HAM). We obtained convergent series solutions using these two iterative methods. The simplicity and accuracy of these methods in solving strongly nonlinear fractional differential equations is displayed through the examples provided. In the case where exact solution exists, error estimates are also investigated.  相似文献   

19.
In this paper, we study the existence and uniqueness of solutions for time-fractional Oldroyd-B fluid equations with generalized fractional derivatives. We distinguish two cases. Firstly for the linear case, we get regularity results under some hypotheses of the source function and the initial data. Secondly for the nonlinear case, we use the Banach fixed point theorem to obtain the existence and uniqueness of solutions.  相似文献   

20.
In this paper, we are concerned with the nonlinear Zoomeron equation with local conformable time-fractional derivative. The concept of local conformable fractional derivative was newly proposed by R. Khalil et al. The bifurcation and phase portrait analysis of traveling wave solutions of the nonlinear Zoomeron equation are investigated. Moreover, by utilizing the exp(-?(ε))-expansion method and the first integral method, we obtained various exact analytical traveling wave solutions to the Zoomeron equation such as solitary wave, breaking wave and periodic wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号