首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine the concentration of oleocanthal in olive pomace waste and compare this to its concentration in extra-virgin olive oil (EVOO). The concentration of oleocanthal in freshly pressed EVOO and its subsequent waste was analysed at early, mid and late season harvests. Oleocanthal concentrations were quantified using high-performance liquid chromatography-mass spectrometry. In oil, oleocanthal concentration was as follows: 123.24 ± 6.48 mg kg(-1) in early harvest, 114.20 ± 17.42 mg kg(-1) in mid harvest and 152.22 ± 10.54 mg kg(-1) in late harvest. Its concentration in waste was determined to be: 128.25 ± 11.33 mg kg(-1) in early harvest, 112.15 ± 1.51 mg kg(-1) in mid harvest and 62.35 ± 8.00 mg kg(-1) in late harvest. Overall, olive pomace waste is a valuable source of oleocanthal.  相似文献   

2.
The aim of this work is to develop an industrially suitable process for the sustainable waste disposal in wine production. The proposed process involves the development of an environmentally friendly method for the isolation of biologically active compounds from Graševina grape pomace according to the green extraction principles, in order to obtain a ready-to-use extract. In this process, deep eutectic solvents (DES) were used as extraction solvents. Aiming to save time in selecting the optimal DES that would provide the most efficient Graševina pomace polyphenols extraction, the user-friendly software COSMOtherm was used and 45 DES were screened. Moreover, the prepared extracts were chemically and biologically characterized to confirm their safety for human application. Computational and experimental results proved the applicability of COSMOtherm in the selection of the optimal DES for the environmentally friendly preparation of the ready-to-use extract from Graševina grape pomace with expected application in the cosmetic industry.  相似文献   

3.
Carbocatalysts doped with heteroatoms such as nitrogen or sulphur have been reported to be useful in persulfate-based advanced oxidation processes for organic pollutant removal. However, there is limited research on the effect of doping with phosphorus atoms on degradation performance. In this work, a new nitrogen and phosphorus-doped carbocatalyst (N, P-HC) was designed using hydrothermal carbonization followed by pyrolysis at 700 °C, with olive pomace as a carbon source, to degrade organic pollutants in the presence of peroxydisulfate (PDS). Experimental results showed that N, P-HC, with its large specific surface area (871.73 m2.g−1), high content of N-pyridinic and N-pyrrolic groups, and the presence of P-O-C and O-P-C bonds, exhibited high degradation performance (98% degradation of Rhodamine B (RhB) in 40 min, with an apparent rate constant (kapp) of 0.055 min−1 and an excellent turnover frequency (TOF) of 0.275 min−1). Quenching study and EPR analysis revealed that singlet oxygen generation (1O2) and direct electron transfer were the main reaction pathways for the non-radical pathway in the degradation of RhB. The improved catalytic efficiency in the N, P-HC/PDS/RhB system can be attributed to the synergistic effect between N and P atoms in the graphitic structure of the carbocatalyst, its high surface area, and the presence of oxygenated functional groups on the surface of the N, P-HC. The used N, P-HC carbocatalyst can also be efficiently recovered by heat treatment at 500 °C. Overall, this study presents a simple and environmentally friendly method for synthesizing a high-performance N, P co-doped olive pomace-based carbocatalyst for water decontamination through PS-AOPs processes.  相似文献   

4.
Journal of Radioanalytical and Nuclear Chemistry - In this study, low-cost olive pomace, which is a waste of olive mill, was chemically modified using different acids, characterized, and utilized...  相似文献   

5.
Olive mill pomace is the major waste product in the olive oil industry and composting these by-products for the purpose of recycling nutrients and organic matter is a sound environmental strategy. Yet little is known about the quantity and timing of nitrogen (N) release from composted olive mill pomace. This paper assesses both gross (using the (15)N dilution technique) and net (aerobic incubation) nitrogen (N) mineralisation and N(2)O emissions of soil amended with seven commercially available composts of olive mill pomace (COMP). All are currently produced in Andalusia and differ in the proportions of raw materials co-composted with the pomace. The absence of significant differences in net N or gross mineralisation and nitrification in COMP-amended soil compared with a control, except for COMP combined with poultry manure, highlighted the recalcitrant nature of the COMP-N. Applications of COMP are hence unlikely to supply available N in available forms, at least in the short-term. Furthermore, N(2)O emissions from COMP-amended soil were negligible and, therefore, applications in the field should not result in increased N loss through denitrification.  相似文献   

6.
The olive oil production is an important industrial sector in many Mediterranean areas, but it is currently struggled by the necessity of a proper valorisation of the olive mill solid waste or alperujo. The alperujo is the main by-product generated during the two-phase olive oil extraction, accounting for up to 80% of the initial olive mass. The alperujo is a source of valuable compounds, such as the pomace olive oil or highly interesting phenolic compounds. In the present research, a novel biorefinery approach has been used for phenolic compounds recovery. However, the extraction of these valuables compounds generates different exhausted phases with high organic matter content that are required to be managed. This study consists of the evaluation of the anaerobic biodegradability of the different fractions obtained in a novel biorefinery approach for the integral valorisation of alperujo. The results show that the different phases obtained during the biorefinery of the alperujo can be effectively subjected to anaerobic digestion and no inhibition processes were detected. The highest methane yield coefficients were obtained for the phases obtained after a two-months storages, i.e., suspended solids and liquid phase free of suspended solids, which generated 366 ± 7 mL CH4/g VS and 358 ± 6 mL CH4/g VS, respectively. The phenol extraction process reduced the methane yield coefficient around 25% due to the retention of biodegradable compounds during the extraction process. Regardless of this drop, the anaerobic digestion is a suitable technology for the stabilization of the different generated residual phases, whereas the high market price of the extracted phenols can largely compensate the slight decrease in the methane generation.  相似文献   

7.
Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value.  相似文献   

8.
Liu J  Sun H  Shang J  Yong Y  Zhang L 《Natural product research》2011,25(12):1190-1194
In this study, we have examined the hypolipidemic effect of olive pomace extracts. Identification and quantitation of maslinic acid and oleanolic acid as the potentially effective components of the pomace extracts were carried out by high performance liquid chromatography methods. Hyperlipidaemia was induced in male Sprague Dawley rats by feeding them with a high cholesterol diet for 30 days. The olive pomace extracts were supplemented (200 mg kg?1 body wt day?1) for 15 days. The levels of serum total cholesterol, triglyceride, high density lipoprotein-cholesterol, low density lipoprotein-cholesterol, aspartate aminotransferase and alanine aminotransferase increased in rats with hyperlipidaemia. Treatment with the olive pomace extracts significantly modulated the abnormalities induced by hyperlipidaemia. Lipid accumulation was decreased in histological findings. This study provides the possibility of utilising the olive pomaces for the prevention and treatment of hyperlipidaemia.  相似文献   

9.
We describe a method for the synthesis of multigram amounts of silica nanoparticles which are controllably hydrophobized to different extents using a room temperature vapor phase silanization process. The extent of hydrophobization of the particles can be adjusted by changing the amount of dichlorodimethylsilane reagent used in the reaction. The method produces particles with good uniformity of surface coating; the silane coating varies from monolayer coverage at low extents of hydrophobization to approximately trilayer at high extents of hydrophobization. Acid-base titration using conductivity detection was used to characterize the extent of hydrophobization which is expressed as the percent of surface silanol groups remaining after silanization. Particles with %SiOH ranging from 100% (most hydrophilic) to 20% (most hydrophobic) were hand shaken with water/methanol mixtures and produced either a particle dispersion, foam, climbing films, or liquid marbles. The type of colloidal structure produced is discussed in terms of the liquid-air-particle contact angle and the energy of adsorption of the particles to the liquid-air surface.  相似文献   

10.
13C nuclear magnetic resonance spectroscopy was used in a first attempt to differentiate olive oil samples by grades. High resolution 13C NMR Distortionless Enhancement by Polarization Transfer (DEPT) spectra of 137 olive oil samples from the four grades, extra virgin olive oils, olive oils, olive pomace oils and lampante olive oils, were measured. The data relative to the resonance intensities (variables) of the unsaturated carbons of oleate (C-9 and C-10) and linoleate (L-9, L-10 and L-12) chains attached at the 1,3- and 2-positions of triacylglycerols were analyzed by linear discriminant analysis. The 1,3- and 2- carbons of the glycerol moiety of triacylglycerols along with the C-2, C-16 and C-18 resonance intensities of saturated, oleate and linoleate chains were also analyzed by linear discriminant analysis. The three discriminanting functions, which were calculated by using a stepwise variable selection algorithm, classified in the true group by cross-validation procedure, respectively, 76.9, 70.0, 94.4 and 100% of the extra virgin, olive oil, olive pomace oil and lampante olive oil grades.  相似文献   

11.
In this work, we explored the use of an Ion Mobility Spectrometry (IMS) device with an ultraviolet (UV) source, and of a Gas Chromatographic (GC) column coupled to an IM Spectrometer with a tritium source, for the discrimination of three grades of olive oil, namely: extra virgin olive oil (EVOO), olive oil (OO) and pomace olive oil (POO). The three types of oil were analyzed with both equipment combinations as coupled to a headspace system and the obtained ion mobility data were consecutively processed with various chemometric tools. The classification rate for an independent validation set was 86.1% (confidence interval at 95% [83.4%, 88.5%]) with an UV-IMS and 100% (confidence interval at 95% [87%, 100%]) using a GC-IMS system. The classification rate was improved by using a more suitable ionization source and a pre-separation step prior to the IM analysis.  相似文献   

12.
At present the olive oil industry produces large amounts of secondary products once considered waste or by-products. In this paper, we present, for the first time, a new interesting olive by-product named “dried destoned virgin olive pomace” (DDVOP), produced by the pomace oil industry. The production of DDVOP is possible thanks to the use of a new system that differs from the traditional ones by having the dryer set at a lower temperature value, 350 °C instead of 550 °C, and by avoiding the solvent extraction phase. In order to evaluate if DDVOP may be suitable as a new innovative feeding integrator for animal feed, its chemical characteristics were investigated. Results demonstrated that DDVOP is a good source of raw protein and precious fiber; that it is consistent in total phenols (6156 mg/kg); rich in oleic (72.29%), linoleic (8.37%) acids and tocopherols (8.80 mg/kg). A feeding trial was, therefore, carried out on sheep with the scope of investigating the influence of the diet on the quality of milk obtained from sheep fed with DDVOP-enriched feed. The resulting milk was enriched in polyunsaturated (0.21%) and unsaturated (2.42%) fatty acids; and had increased levels of phenols (10.35 mg/kg) and tocopherols (1.03 mg/kg).  相似文献   

13.
Currently, there is an increasing interest to valorise agri-food waste containing bioactive compounds with potential health benefits. In this paper, the recovery of functional molecules from apple pomace, the most abundant by-product of the apple processing industry, was carried out by ultrasound-assisted extraction (UAE) on fresh and freeze-dried samples. UAE extract, obtained by double extraction of freeze-dried apple pomace, was subjected to chromatographic and spectrophotometric characterization. It showed good levels of total phenol content, high antioxidant activity, and interesting antioxidant compounds (quercetin derivatives, chlorogenic acid, phloridzin). Subsequently, freeze-dried apple pomace, containing 40.19% of dietary fibre, was used as a fortifying agent for beef burgers (4% and 8%). The results concerning colour and sensory analysis of the fortified products were graded even better than the control (0%). The improved fibre and phenol content, together with the neutral flavour, represent the most interesting characteristics of fortified burgers. The results confirm that UAE was a successful technique for extracting phenol compounds and that the addition of apple pomace represents a valid approach to increase the health properties and palatability of beef burgers, including for consumers who do not like meat.  相似文献   

14.
Pyrolytic process has a promising potential for the environmentally friendly upgrading of lignocellulosic materials and plastic waste. The co-pyrolysis of olive residue and poly(vinyl chloride) was investigated under nitrogen atmosphere by dynamic thermogravimetric analysis in the temperature range of 300–975 K. Two main stages of mass loss have been evidenced by TG analysis. The first occurs in the temperature range of 420–684 K, and the second occurs at 631–840 K. This research was focused on the interaction between olive residue and poly(vinyl chloride) during the pyrolysis process. Discrepancies between the experimental and calculated TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. It was found that reactivity of olive residue was increased in olive residue/PVC mixture. In addition, a kinetic analysis was performed to fit thermogravimetric data, the mixture is considered as multistage process. A reasonable fit to the experimental data was obtained for all materials and their mixture by isoconversional Friedman method.  相似文献   

15.
Nowadays, increasing interest in olive pomace (OP) valorization aims to improve olive’s industry sustainability. Interestingly, several studies propose a high-value application for OP extracts containing its main phenolic compounds, hydroxytyrosol and oleuropein, as therapy for ocular surface diseases. In this work, the stability and accessibility of OP total phenolic and flavonoid content, main representative compounds, and antioxidant activity were assessed under different pretreatment conditions. Among them, lyophilization and supercritical CO2 extraction were found to increase significantly most responses measured in the produced extracts. Two selected extracts (CONV and OPT3) were obtained by different techniques (conventional and pressurized liquid extraction); Their aqueous solutions were characterized by HPLC-DAD-MS/MS. Additionally, their safety and stability were evaluated according to EMA requirements towards their approval as ophthalmic products: their genotoxic effect on ocular surface cells and their 6-months storage stability at 4 different temperature/moisture conditions (CPMP/ICH/2736/99), together with pure hydroxytyrosol and oleuropein solutions. The concentration of hydroxytyrosol and oleuropein in pure or extract solutions was tracked, and possible degradation products were putatively identified by HPLC-DAD-MS/MS. Hydroxytyrosol and oleuropein had different stability as standard or extract solutions, with oleuropein also showing different degradation profile. All compounds/extracts were safe for ophthalmic use at the concentrations tested.  相似文献   

16.
The solid fraction of olive mill waste water (OMWW) was separated from OMWW and then the solutes in the solid fraction of OMWW were extracted with ethanol. The detection of polyphenols in the ethanol extract showed the presence of polyphenols in the solid fraction of OMWW. Effects of solvent-to-solid ratio, extraction and agitation time on the extraction of polyphenols from the solid fraction of OMWW were examined and the maximum amount of polyphenol was extracted from the solid fraction of OMWW with a solvent-to-solid ratio of 15 at 70?min of extraction and 10?min of agitation time. Percent yields and purities of the polyphenols extracted from solid fraction of OMWW were higher than those of the polyphenols extracted from olive pomace with ethanol at 70?min of extraction and 10?min of agitation time with solvent-to-solid ratio of 15.  相似文献   

17.
Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels.  相似文献   

18.
We are reporting in the present study that molecules extracted from olive pomace prevent cell death induced by Ca2+-overloading in different cell types. Exposure of cells to these molecules counteracts the Ca2+-induced cell damages by reducing the activation of the Ca2+-dependent protease calpain, acting possibly through the modification of the permeability to Ca2+ of the plasma membrane. The purification step by RP-HPLC suggests that effective compound(s), differing from the main biophenols known to be present in the olive pomace extract, could be responsible for this effect. Our observations suggest that bioactive molecules present in the olive pomace could be potential candidates for therapeutic applications in pathologies characterised by alterations of intracellular Ca2+ homeostasis.  相似文献   

19.
Summary An extracellular lipase was produced by Bacillus coagulans by solid-state fermentation. Solid waste from melon was used as the basic nutrient source and was supplemented with olive oil. The highest lipase production (78,069 U/g) was achieved after 24h of cultivation with 1% olive oil enrichment. Enzyme had an optimal activity at 37°C and pH 7.0, and sodium dodecyl sulfate increased lipase activity. NH 4NO3 increased enzyme production, whereas organic nitrogen had no effect. The effect of the type of carbon sources on lipolytic enzyme production was also studied. The best results were obtained with starch and maltose (148,932 and 141,629 U/g, respectively), whereas a rather low enzyme activity was found in cultures grown on glucose and galactose (approx 118,769 and 123,622 U/g, respectively). Enzyme was inhibited with Mn+2 and Ni+2 by 68 and 74%, respectively. By contrast, Ca+2 enhanced enzyme production by 5%.  相似文献   

20.
The objects of the paper are the results of the study on the compatibility of copper refining waste with cement system. The study based on the use of thermal analysis and the comparison of its results with further applied methods (tests of setting, compressive strength and pore analysis) showed good compatibility of the waste up to 20% dose opposite to the cement. It seems that the waste action in cement paste with the Ca(OH)2 binding, produced in the cement process hydration, is connected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号