首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroactive hydrogel scaffolds are fabricated by the 3D‐printing technique using composites of 30% Pluronic F127 and aniline tetramer‐grafted‐polyethylenimine (AT‐PEI) copolymers with various contents from 2.5% to 10%. The synthesized AT‐PEI copolymers can self‐assemble into nanoparticles with the diameter of ≈50 nm and display excellent electroactivity due to AT conjugation. The copolymers are then homogeneously distributed into 30% Pluronic F127 solution by virtue of the thermosensitivity of F127, denoted as F/AT‐PEI composites. Macroscopic photographs of latticed scaffolds elucidate their excellent printability of F/AT‐PEI hydrogels for the 3D‐printing technique. The conductivities of the printed F/AT‐PEI scaffolds are all higher than 2.0 × 10−3 S cm−1, which are significantly improved compared with that of F127 scaffold with only 0.94 × 10−3 S cm−1. Thus, the F/AT‐PEI scaffolds can be considered as candidates for application in electrical stimulation of tissue regeneration such as repair of muscle and cardiac nerve tissue.

  相似文献   


2.
The pore structure of three-dimensional scaffolds applied in tissue engineering may influence the mechanical properties and cellular activity. As the optimal pore size is dependent on the specifics of the biomaterial or tissue engineering application, the ability to alter the pore size over a wide range is necessary for several scaffolds in order to meets the requirements of the applications. The aim of this study is to develop methodologies to produce calcium phosphate scaffolds with acceptable pore size and defined pore-channel interconnectivity. The pore size of calcium phosphate scaffolds is established during the freeze-drying fabrication process. In this process, material suspension is simply frozen and then dried by freeze-drier, which able to produce material with unique porous architectures, where the porosity is almost a direct replica of the frozen solvent crystals. There are two different method of freeze-casting carried out in order to study the effect of freezing temperature by which in the first method; sample being soaked with liquid nitrogen (-196 °C) for about 10 minutes before been place inside a freezer (-40 °C). In the second method, the sample was directly placed inside a freezer for casting at temperature of -40 ̊C. The results show that the pore size of the scaffolds decreased as the freezing temperature was reduced. Taken together, these results demonstrate that the methodologies applied in this study can be used to produce a range of calcium phosphate scaffolds exhibiting better compressive strength, approximately 665-875 KPa for 54-64.3% of porosity with mean pore size from 102-113 μm. The methods developed in this study provide a basis for the investigation on the effects of different freezing temperature in freeze-casting process on the porosity, morphology, and compressive properties of the calcium phosphate scaffolds.  相似文献   

3.
One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi-functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti-tumor therapy. The CQDs are synthesized from a plant-inspired bioactive molecule, 1, 3, 5-trihydroxybenzene. The 3D printed GelMA-CQDs hydrogels display typical shear-thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti-inflammatory genes (e.g., IL-4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel-like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra-red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA-CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.  相似文献   

4.
Solid conducting biodegradable composite membranes have shown to enhance nerve regeneration. However, few efforts have been directed toward porous conducting biodegradable composite membranes for the same purpose. In this study, we have fabricated some porous conducting poly(dl-lactide) composite membranes which can be used for the biodegradable nerve conduits. The porous poly(dl-lactide) membranes were first prepared through a phase separation method, and then they were incorporated with polypyrrole to produce porous conducting composite membranes by polymerizing pyrrole monomer in gas phase using FeCl3 as oxidant. The preparation conditions were optimized to obtain membranes with controlled pore size and porosity. The direct current conductivity of composite membrane was investigated using standard four-point technique. The effects of polymerization time and the concentration of oxidant on the conductivity of the composite membrane were examined. Under optimized polymerization conditions, some composite membranes showed a conductivity close to 10−3 S cm−1 with a lower polypyrrole loading between 2 and 3 wt.%. A consecutive degradation in Ringer's solution at 37 °C indicated that the conductivity of composite membrane did not exhibit significant changes until 9 weeks although a noticeable weight loss of the composite membrane could be seen since the end of the second week.  相似文献   

5.
We demonstrate the facile microwave‐assisted synthesis of a porous organic framework 1 and the sulfonated solid ( 1S ) through postsubstitution. Remarkably, the conductivity of 1S showed an approximately 300‐fold enhancement at 30 °C as compared to that of 1 , and reached 7.72×10−2 S cm−1 at 80 °C and 90 % relative humidity. The superprotonic conductivity exceeds that observed for any conductive porous organic polymer reported to date. This material, which is cost‐effective and scalable for mass production, also revealed long‐term performance over more than 3 months without conductivity decay.  相似文献   

6.
The natural extracellular matrix (ECM) possessed varying biomechanical properties which played important roles in the dynamic cellular microenvironment. However, for the conventional bone tissue engineering scaffolds, stretchability and shape memory property were normally absent. Thus, the behaviors of responsive changes required in dynamic physiological settings were unsatisfactory. Herein, a series of conductive polyurethane shape memory elastomers (PCL-IPDI-AT) were synthesized, which based on conductive amino capped aniline trimer (AT), isophorone diisocyanate (IPDI) and poly(ԑ-caprolactone) (PCL). The conductive elastomers possessed high elasticity and flexibility, especially, the breaking elongation of copolymer with 15% AT content was up to 570 ± 56%. The mechanical properties of elastomers could be adjusted by regulating the content of AT in copolymers. The conductive elastomers exhibited excellent shape fixity ratio and good shape recovery ability at 37 °C. The electrical conductivity of elastomers was measured via the standard van der Pauw four-probe method. They were all around 10−7 S/cm and similar to that in human physiological environments. On the one hand, excellent cytocompatibility was demonstrated by the viability and proliferation results of MC3T3-E1 pre-osteoblasts seeded on the elastomer. On the other hand, the elastomer could synergistically promote the osteogenic differentiation compared to PCL in terms of ALP activity, calcium deposition, and bone-related protein and gene expression levels as combined with electrical stimulation (ES). Specifically, the ALP activity for conductive elastomer under ES was notably improved by 1.4-fold compared to PCL at 7 days. Overall, the conductive elastomers displayed excellent stretchability, shape memory property, fatigue resistance and osteogenic bioactivity. They may be applied as bone substitutes for electrical-signal-sensitive bone tissue engineering.  相似文献   

7.
The reactions between OH radicals and hydrogen halides (HCl, HBr, HI) have been studied between 298 and 460 K by using a discharge flow-electron paramagnetic resonance technique. The rate constants were found to be kHCl(298 K) = (7.9 ± 1.3) × 10−13 cm3 molecule−1 s−1 with a weak positive temperature dependence, kHBr (298-460 K) = (1.04 ± 0.2) × 10−11 cm3 molecule−1 s−1, and kHI(298 K) = (3.0 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The homogeneous nature of these reactions has been experimentally tested.  相似文献   

8.
Electrospinning has been extensively accepted as one of most important techniques for fabrication of scaffolds for bone tissue engineering. Polycaprolactone is one of the most applied electro-spinned scaffolds. Since low mechanical strength of polycaprolactone scaffold leads to the limitation of its applications, composition of polycaprolactone with ceramic particles is of great interest. Several studies have been conducted on fabrication and characterization of polycaprolactone nanocomposite scaffolds, but none of these researches has used mesoporous silica particles (KIT-6). In this project, a high-strength and bioactive nanocomposite scaffold has been developed which consists of polycaprolactone and mesoporous silica particles. Results showed that increase of KIT-6 particles percentages up to 5% leads to the enhancement of tensile strength of scaffold from 1.8 ± 0.2 to 2.9 ± 1.0 MPa. Although wettability of scaffolds in presence of particles was totally lower than pure PCL scaffold, but increase of particles percentages led to enhancement of wettability and water absorption of scaffolds. On the other hand presence of KIT-6 particles increased specific surface area and also bioactivity of scaffold was increased by enhancement of ion exchange between surface and simulated body fluid. Finally it was concluded that PCL-KIT-6 scaffolds are a suitable candidate for application in tissue engineering.  相似文献   

9.
Graphene oxide (GO) was chemically modified with a poly(propylene)imine Generation 3.0 dendrimer (DAB-Am-16). The characterization, structure and properties of hybrid graphene oxide/DAB-Am-16 dendrimer was studied by Raman spectroscopy, Fourier-Transforming Infrared Spectroscopy (FT-IR), X-Ray Photoelectron Spectroscopic (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Thermogravimetric analysis. After functionalized the hybrid material (GOD) can interact with copper and subsequently with hexacyanoferrate (III) ions (GODHCu). The GODHCu incorporated into a graphite paste electrode (20% w/w) was applied to an electrocatalytic detection of neurotransmitter l-dopamine using differential pulse voltammetry. The analytical curve showed a linear response in the concentration range from 1.0 × 10−7 to 1.0 × 10−5 mol L−1 with a corresponding equation Y(A) = 1.706 × 10−5 + 0.862 [l-dopamine] and a correlation coefficient r2 = 0.998. The detection limit was 6.36 × 10−7 mol L−1 with a relative standard deviation of ±4% (n = 3) and an amperometric sensitivity of 0.862 A/mol L−1.  相似文献   

10.
A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode‐array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30 min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10−2–10.0 μg/mL for caffeic acid, 1.3 × 10−3–1.9 μg/mL for p‐hydroxycinnamic acid, 2.8 × 10−3–4.1 μg/mL for ferulic acid, and 2.7 × 10−3–4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1–1.0 ng/mL, and satisfactory recoveries (92.5–111.2%) and precisions (RSDs 1.1–9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods.  相似文献   

11.
Fourier transform infrared (FTIR) smog chamber techniques were used to investigate the atmospheric chemistry of the isotopologues of methane. Relative rate measurements were performed to determine the kinetics of the reaction of the isotopologues of methane with OH radicals in cm3 molecule−1 s−1 units: k(CH3D + OH) = (5.19 ± 0.90) × 10−15, k(CH2D2 + OH) = (4.11 ± 0.74) × 10−15, k(CHD3 + OH) = (2.14 ± 0.43) × 10−15, and k(CD4 + OH) = (1.17 ± 0.19) × 10−15 in 700 Torr of air diluent at 296 ± 2 K. Using the determined OH rate coefficients, the atmospheric lifetimes for CH4–xDx (x = 1–4) were estimated to be 6.1, 7.7, 14.8, and 27.0 years, respectively. The results are discussed in relation to previous measurements of these rate coefficients.  相似文献   

12.
A high incidence of bone defects and the limitation of autologous bone grafting require 3 D scaffolds for bone repair. Compared with synthetic materials, natural edible materials possess outstanding advantages in terms of biocompatibility, bioactivities and low manufacturing cost for bone tissue engineering. In this work, attracted by the natural porous/fabric structure, good biocompatibility and bioactivities of the lotus root, the lotus root-based scaffolds were fabricated and investigated the...  相似文献   

13.
Poly (glycerol sebacate) (PGS) is a thermoset biodegradable elastomer considered as a promising candidate material for nerve applications. However, PGS synthesis is very time and energy consuming. In this study, the PGS pre‐polymer (pPGS) was synthesized using three synthesis times of 3, 5, and 7 hours at 170°C. Fourier transform infrared (FTIR), nuclear magnetic resonance spectroscopy, X‐ray diffraction analysis, and differential scanning calorimetry thermogram were utilized to study the pPGS behavior. Poly (vinyl alcohol) was used as a carrier to fabricate aligned poly (vinyl alcohol)‐poly (glycerol sebacate) (PVA‐PGS) fibers with various ratios (60:40, 50:50, and 40:60) using electrospinning and crosslinked through the thermal crosslinking method. Morphology of the fibers was studied before and after crosslinking using scanning electron microscopy (SEM). FTIR, mechanical properties in the dry and wet state, water contact angle, in vitro degradation, and water uptake behavior of crosslinked scaffolds were also investigated. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, SEM analysis, and 4′, 6‐diamidino‐2‐phenylindole (DAPI) staining were utilized to determine the biocompatibility of scaffolds. The results show the synthesized pPGS in 3 hours at 170°C is the optimized sample in the terms of chemical reaction. All scaffolds have bead‐free and a uniform fiber diameter. The Young's modulus of crosslinked PVA‐PGS (50:50 and 40:60) fibers is shown to be in the expected range for nerve applications. The cell culture studies reveal PVA‐PGS (50:50 and 40:60) fibers could lead to better cell adhesion and proliferation. The results suggest that PVA‐PGS (50:50 and 40:60) is a suitable and promising biodegradable material in the fabrication of scaffolds for nerve regeneration.  相似文献   

14.
In this study, biodegradable polylactic acid (PLA) and PLA nanocomposite scaffolds reinforced with magnetic and conductive fillers, were processed via fused filament fabrication additive manufacturing and their bioactivity and biodegradation characteristics were examined. Porous 3D architectures with 50% bulk porosity were 3D printed, and their physicochemical properties were evaluated. Thermal analysis confirmed the presence of ~18 wt% of carbon nanostructures (CNF and GNP; nowonwards CNF) and ~37 wt% of magnetic iron oxide (Fe2O3) particles in the filaments. The in vitro degradation tests of scaffolds showed porous and fractured struts after 2 and 4 weeks of immersion in DMEM respectively, although a negligible weight loss is observed. Greater extent of degradation is observed in PLA with magnetic fillers followed by PLA with conductive fillers and neat PLA. In vitro bioactivity study of scaffolds indicate enhancement from ~2.9% (PLA) to ~5.32% (PLA/CNF) and ~ 3.12% (PLA/Fe2O3). Stiffness calculated from the compression tests showed decrease from ~680 MPa (PLA) to 533 MPa and 425 MPa for PLA/CNF and PLA/Fe2O3 respectively. Enhanced bioactivity and faster biodegradation response of PLA nanocomposites with conductive fillers make them a potential candidate for tissue engineering applications such as scaffold bone replacement and regeneration.  相似文献   

15.
Sodium alginate (Alg) and xanthan gum (XG) based nanocomposite scaffolds reinforced with various amounts of cellulose nanocrystals (CNCs) and/or halloysite nanotubes (HNTs) were prepared by freeze-casting/drying method. In this study, the structure-property-performance relationship was mainly focused and analysed. Morphological analysis showed high porosity and pore-interconnectivity (pore channels) in all obtained scaffolds. Structural analysis demonstrates the good interfacial interactions and uniform dispersion of the CNCs and HNTs, involving partial orientation within the polymeric network. The water uptake capacity (from 14.73.7 ± 0.46 g/g to 11.34 ± 0.32 g/g) and porosity (from 91.7 ± 0.81% to 88.5 ± 0.64%) were reduced. The compressive strengths (in dry state from 91.1 ± 1.2 kPa to 114.4 ± 0.6 kPa and in wet state from 9.0 ± 0.8 kPa to 10.6 ± 0.8 kPa), thermal stability, cytocompatibility (MC3T3-E1 osteoblastic cells) of the nanocomposite scaffolds improved as compared to Alg and AlgX scaffolds without CNCs and/or HNTs. The obtained scaffolds may be appropriate as scaffolding material in bone tissue engineering.  相似文献   

16.
The kinetics and mechanism of formation of gehlenite, Al–Si spinel phase, wollastonite and anorthite from the mixture of kaolinite and calcite was investigated by differential thermal analysis under the heating rate from 283 to 293 K min−1 using Kissinger equation. The changes in the phase composition of the sample during the thermal treatment were investigated via simultaneous TG-DTA, in situ high-temperature x-ray diffraction analysis and high-temperature heating-microscopy. The crystallizations of gehlenite and Al–Si spinel phase show apparent activation energy of (411 ± 5) kJ mol−1 and (550 ± 9) kJ mol−1, respectively. The value of kinetic exponent corresponds to the process limited by the decreasing nucleation rate for gehlenite while constant nucleation rate is determined for Al–Si spinel phase. Anorthite crystallizes from the eutectic melt and the process shows the apparent activation energy of (1140 ± 25) kJ mol−1. The process is limited by the constant nucleation rate of a new phase.  相似文献   

17.

In this work, two newly sensitive and selective Al(III)-modified carbon paste electrodes (MCPEs) were developed based on diphenylcarbazone (DPC) modifier mixed with tricresyl phosphate plasticizer and either graphite powder (electrode I) or graphite powder mixed with graphene (electrode II). The potentiometric performance characteristics of the two electrodes were scrutinized and discussed. The proposed sensors showed a high electrochemical response in the linear concentration range of 1.0 × 10−6 to 1.0 × 10−2 mol L−1 with a good Nernstian slopes of 20.12 ± 0.30 mV decade−1 and 20.63 ± 0.66 mV decade−1 and limits of detection of 9.0 × 10−7 and 8.5 × 10−7 mol L−1 for electrode (I) and electrode (II), respectively. Both electrodes showed a fast response time and reasonable thermal stability. The potentiometric response of the DPC-based electrodes was independent on the pH of the tested solutions in ranges of 2.5–5 and 2.5–5.5 for electrode (I) and electrode (II), respectively. The two electrodes can be also used in partially non-aqueous medium containing up to 20% (v/v) acetone or methanol with no significant changes in the working concentration ranges or the slopes. The proposed electrodes showed fairly good discriminating ability toward Al(III) ions in comparison with many other metal ions. The electrodes were applied successfully for Al(III) ions determination in drainage water, spiked tap water and pharmaceutical preparation samples. Furthermore, the electrode surfaces were characterized using energy-dispersive X-ray (EDX) and scanning electron microscopic (SEM) as surface characterization techniques and Fourier Transform Infrared (FT-IR) technique to confirm the interaction between Al(III) and DPC.

  相似文献   

18.
Although graphene fiber-based supercapacitors are promising for wearable electronic devices, the low energy density of electrodes and poor cold resistance of aqueous electrolytes limit their wide application in cold environments. Herein, porous nitrogen/sulfur dual-doped graphene fibers (NS-GFs) are synthesized by hydrothermal self-assembly followed by thermal annealing, exhibiting an excellent capacitive performance of 401 F cm−3 at 400 mA cm−3 because of the synergistic effect of heteroatom dual-doping. The assembled symmetric all-solid-state supercapacitor with polyvinyl alcohol/H2SO4/graphene oxide gel electrolyte exhibits a high capacitance of 221 F cm−3 and a high energy density of 7.7 mWh cm−3 at 80 mA cm−3. Interestingly, solar–thermal energy conversion of the electrolyte with 0.1 wt % graphene oxide extends the operating temperature range of the supercapacitor to 0 °C. Furthermore, the photocatalysis effect of the dual-doped heteroatoms increases the capacitance of NS-GFs. At an ambient temperature of 0 °C, the capacitance increases from 0 to 182 F cm−3 under 1 sun irradiation because of the excellent solar light absorption and efficient solar–thermal energy conversion of graphene oxide, preventing the aqueous electrolyte from freezing. The flexible supercapacitor exhibits a long cycle life, good bending resistance, reliable scalability, and ability to power visual electronics, showing great potential for outdoor electronics in cold environments.  相似文献   

19.
The reaction of solvated electrons with baicalin in N2-saturated ethanol has been studied by pulse radiolysis. The results show that a solvated electron can add to baicalin and generate a baicalin radical anion with a maximum UV absorbance peak at 360 nm. Its molar extinction coefficient at this wavelength is 1.3×104 M−1 cm−1. The rate constant for the build-up of the baicalin radical anion is 1.3(±0.4)×1010 M−1 s−1. Decay of the radical anion is induced by a proton transfer reaction and a recombination reaction, which involves a pseudo-first-order reaction with rate constant 2.6(±0.4)×103 s−1 and a second-order reaction with rate constant 1.3(±0.2)×109 M−1 s−1. The effect of acetaldehyde on the decay of the baicalin radical anion was also investigated. Electron transfer between the baicalin radical anion and acetaldehyde was not observed, probably due to the low rate of electron transfer between the baicalin radical anion and acetaldehyde. Reactivity of the rutin, quercetin, baicalin and ethyl acrylate radical anions are also compared.  相似文献   

20.
The kinetics of the gas-phase reactions of OH radicals, NO3 radicals, and O3 with indan, indene, fluorene, and 9,10-dihydroanthracene have been studied at 297 ± 2 K and atmospheric pressure of air. The rate constants, or upper limits thereof, for the O3 reactions were (in cm3 molecule−1 s−1 units): indan, < 3 × 10−19; indene, (1.7 ± 0.5) × 10−16, fluorene, < 2 × 10−19; and 9,10-dihydroanthracene, (9.0 ± 2.0) × 10−19. Using a relative rate method, the rate constants for the OH radical and NO3 radical reactions, respectively, were (in cm3 molecule−1 s−1 units): indan, (1.9 ± 0.5) × 10−11 and (6.6 ± 2.0) × 10−15; indene, (7.8 ± 2.0) × 10−11 and (4.1 ± 1.5) × 10−12; fluorene, (1.6 ± 0.5) × 10−11 and (3.5 ± 1.2) × 10−14; and 9,10-dihydroanthracene, (2.3 ± 0.6) × 10−11 and (1.2 ± 0.4) × 10−12. These kinetic data were used to assess the relative contributions of the various reaction pathways. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 299–309, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号