首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents a new type of second‐order scheme for solving the system of Euler equations, which combines the Runge‐Kutta discontinuous Galerkin (DG) finite element method and the kinetic flux vector splitting (KFVS) scheme. We first discretize the Euler equations in space with the DG method and then the resulting system from the method‐of‐lines approach will be discretized using a Runge‐Kutta method. Finally, a second‐order KFVS method is used to construct the numerical flux. The proposed scheme preserves the main advantages of the DG finite element method including its flexibility in handling irregular solution domains and in parallelization. The efficiency and effectiveness of the proposed method are illustrated by several numerical examples in one‐ and two‐dimensional spaces. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

2.
本文主要研究高维带弱奇异核的发展型方程的交替方向隐式(ADI)差分方法.向后欧拉(Euler)方法联立一阶卷积求积公式处理时间方向的离散,有限差分方法处理空间方向的离散,并进一步构造了ADI全离散差分格式.然后将二维问题延伸到三维问题,构造三维空间问题的ADI差分格式.基于离散能量法,详细证明了全离散格式的稳定性和误差分析.随后给出了2个数值算例,数值结果进一步验证了时间方向的收敛阶为一阶,空间方向的收敛阶为二阶,和理论分析结果一致.  相似文献   

3.
Our objective in this article is to present some numerical schemes for the approximation of the 2‐D Navier–Stokes equations with periodic boundary conditions, and to study the stability and convergence of the schemes. Spatial discretization can be performed by either the spectral Galerkin method or the optimum spectral non‐linear Galerkin method; time discretization is done by the Euler scheme and a two‐step scheme. Our results show that under the same convergence rate the optimum spectral non‐linear Galerkin method is superior to the usual Galerkin methods. Finally, numerical example is provided and supports our results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The finite volume scheme of Vijayasundaram and Osher-Solomon type for shallow water equations are proposed. The numerical results with discontinuous initial condition and the comparison with Lax-Friedrichs numerical flux are presented for homogeneous case. The extension of the method for the inhomogeneous case is described.  相似文献   

5.
研制了分别用显式Euler法、隐式Euler法、Crank-Nicolson格式(梯形方法)求解带第一、第二及混合边值条件的抛物问题的应用软件,通过求解若干抛物问题对该软件作了测试,获得了预期的数值结果,讨论了时间和空间步长的变化对格式计算结果的影响,得到了三种方法的稳定性、收敛精度和计算量.  相似文献   

6.
In this paper, we propose and analyze a fully discrete local discontinuous Galerkin (LDG) finite element method for time-fractional fourth-order problems. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. Stability is ensured by a careful choice of interface numerical fluxes. We prove that our scheme is unconditional stable and convergent. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.  相似文献   

7.
We propose a new well-balanced unstaggered central finite volume scheme for hyperbolic balance laws with geometrical source terms. In particular we construct a new one and two-dimensional finite volume method for the numerical solution of shallow water equations on flat/variable bottom topographies. The proposed scheme evolves a non-oscillatory numerical solution on a single grid, avoids the time consuming process of solving Riemann problems arising at the cell interfaces, and is second-order accurate both in space and time. Furthermore, the numerical scheme follows a well-balanced discretization that first discretizes the geometrical source term according to the discretization of the flux terms, and then mimics the surface gradient method and discretizes the water height according to the discretization of the water level. The resulting scheme exactly satisfies the C-property at the discrete level. The proposed scheme is then applied and classical one and two-dimensional shallow water equation problems with flat or variable bottom topographies are successfully solved. The obtained numerical results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential and efficiency of the proposed method.  相似文献   

8.
一个求解双曲型守恒律方程的高分辨率GVC格式   总被引:1,自引:0,他引:1  
1 引  言本文研究双曲型方程:ut+fx=0, t>0,-∞相似文献   

9.
Yali Gao 《Applicable analysis》2018,97(13):2288-2312
In this paper, Galerkin finite methods for two-dimensional regularized long wave and symmetric regularized long wave equation are studied. The discretization in space is by Galerkin finite element method and in time is based on linearized backward Euler formula and extrapolated Crank–Nicolson scheme. Existence and uniqueness of the numerical solutions have been shown by Brouwer fixed point theorem. The error estimates of linearlized Crank–Nicolson method for RLW and SRLW equations are also presented. Numerical experiments, including the error norms and conservation variables, verify the efficiency and accuracy of the proposed numerical schemes.  相似文献   

10.
A minimum-stencil difference scheme for computing two-dimensional axisymmetric gas flows is described. The scheme is explicit, conservative, and second-order accurate in space and time. The numerical results obtained for pulsating flows and contact discontinuity instabilities are discussed. The mechanisms of flow pulsation and instability generation are described.  相似文献   

11.
本文给出了二维非定常N-S方程的三种数值格式,其中空间变量用谱非线性Galerkin算法进行离散,时间变量用有限差分离散,并研究了这些格式数值解的逼近精度.最后,给出了部分数值计算结果.  相似文献   

12.
高正红 《应用数学和力学》1995,16(12):1123-1134
本文给出了绕二维与三维刚性或弹性振动机翼非定常无粘流动的欧拉方程解。首先利用Jameson的有限体积方法建立了求解欧拉方程的Runge-Kutta方法。为了提高受Runge-Kutta法稳定性限制的时间步长,文中采用了变系数的残值光顺方法。该方法避免了常系数残值光顺引起局部流场损失较大的问题。同时可在保证原计算格式精度要求下,大幅度提高计算时间步长,从而提高了计算效率。文中以二维与三维矩形机翼为例,分别对其在跨音速流场中作则性或弹性振动的非定常气动力进行了计算,研究了不同振动频率对流动产生的影响。部分计算结果与相应实验结果进行了比较。结果证明本方法是可靠的,可以用于求解绕任意运动机翼非定常流动问题。  相似文献   

13.
In this paper, we apply the boundary integral equation technique and the dual reciprocity boundary elements method (DRBEM) for the numerical solution of linear and nonlinear time‐fractional partial differential equations (TFPDEs). The main aim of the present paper is to examine the applicability and efficiency of DRBEM for solving TFPDEs. We employ the time‐stepping scheme to approximate the time derivative, and the method of linear radial basis functions is also used in the DRBEM technique. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity that appears in the nonlinear problems under consideration. To confirm the accuracy of the new approach, several examples are presented. The convergence of the DRBEM is studied numerically by comparing the exact solutions of the problems under investigation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Among the typical time integrations for PDEs, Leap-frog scheme is the well-known method which can easily be used. A most welcome feature of the Leap-frog scheme is that it has very simple scheme and is easy to be implemented. The main purpose of this paper is to propose and analyze an improved Leap-frog scheme, the so-called continuous-stage modified Leap-frog scheme for high-dimensional semi-linear Hamiltonian wave equations. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Hamiltonian equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula (the Duhamel Principle). Then the continuous-stage modified Leap-frog scheme is formulated. Accordingly, the convergence, energy preservation, symplecticity conservation and long-time behaviour of explicit schemes are rigorously analysed. Numerical results demonstrate the remarkable advantage and efficiency of the improved Leap-frog scheme compared with the existing mostly used numerical schemes in the literature.  相似文献   

15.
A new iterative finite element method for solving the stationary incompressible magnetohydrodynamics (MHD) equations is derived in this paper. The method consists of two steps at each iteration step, we need first to solve the MHD equations by the Oseen-type iterative scheme, and then an error correction strategy is applied to control the error arising from the linearization of the nonlinear MHD equations. The new method not only maintains the advantage of the standard Oseen-type scheme but also possesses a rapid rate of convergence. It is proved that the convergence rate of the proposed method is increased greatly under the uniqueness condition. The uniform stability and convergence of the new scheme are analyzed. Ample numerical experiments are performed to validate the accuracy and the efficiency of the new numerical scheme.  相似文献   

16.
陈丽贞  许传炬 《数学研究》2011,44(3):219-233
我们提出和分析了一种求解Stokes方程的数值方法.新方法基于空间上的Legendre谱离散,时间上则采用投影/方向分裂格式.更确切地说,时间离散的出发点是旋度形式的压力校正投影法,在此基础上进一步应用方向分裂法,把速度和压力方程分裂为一系列一维的椭圆型子问题.然后生成的这些一维子问题用Legendre谱方法进行空间离散.另外,我们证明了全离散格式的稳定性.一些数值实验验证了收敛性和方法的有效性.  相似文献   

17.
In this article, we develop a higher order numerical approximation for time dependent singularly perturbed differential‐difference convection‐diffusion equations. A priori bounds on the exact solution and its derivatives, which are useful for the error analysis of the numerical method are given. We approximate the retarded terms of the model problem using Taylor's series expansion and the resulting time‐dependent singularly perturbed problem is discretized by the implicit Euler scheme on uniform mesh in time direction and a special hybrid finite difference scheme on piecewise uniform Shishkin mesh in spatial direction. We first prove that the proposed numerical discretization is uniformly convergent of , where and denote the time step and number of mesh‐intervals in space, respectively. After that we design a Richardson extrapolation scheme to increase the order of convergence in time direction and then the new scheme is proved to be uniformly convergent of . Some numerical tests are performed to illustrate the high‐order accuracy and parameter uniform convergence obtained with the proposed numerical methods.  相似文献   

18.
In this paper, the authors consider the zero-viscosity limit of the three dimensional incompressible steady Navier-Stokes equations in a half space R+×R2. The result shows that the solution of three dimensional incompressible steady Navier-Stokes equations converges to the solution of three dimensional incompressible steady Euler equations in Sobolev space as the viscosity coefficient going to zero. The method is based on a new weighted energy estimates and Nash-Moser itera...  相似文献   

19.
This paper presents a fixed stepsize Euler scheme for linear impulsive delay differential equations and considers its convergence. We propose a method to take the partition nodes for the Euler scheme. Employing the induction and the technique of inequality, we obtain the order of convergence for Euler scheme. An example is given to illustrate the efficiency of our result.  相似文献   

20.
We propose an efficient and robust algorithm to solve the steady Euler equa- tions on unstructured grids.The new algorithm is a Newton-iteration method in which each iteration step is a linear multigrid method using block lower-upper symmetric Gauss-Seidel(LU-SGS)iteration as its smoother To regularize the Jacobian matrix of Newton-iteration,we adopted a local residual dependent regularization as the replace- ment of the standard time-stepping relaxation technique based on the local CFL number The proposed method can be extended to high order approximations and three spatial dimensions in a nature way.The solver was tested on a sequence of benchmark prob- lems on both quasi-uniform and local adaptive meshes.The numerical results illustrated the efficiency and robustness of our algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号