首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
本研究利用石墨烯(rGO)与3,4-乙烯二氧噻吩(EDOT)单体芳香环之间的π-π*相互作用和氢键作用,采用脉冲恒电位一步法制备了聚3,4-乙烯二氧噻吩石墨烯(PEDOT-rGO)复合膜,将纳米镍(NiNPs)电沉积在此复合膜(PEDOT-rGO)表面,制备了NiNPs/PEDOT-rGO修饰玻碳电极(NiNPs/PEDOT-rGO/GCE),研究了此修饰电极对葡萄糖的电催化氧化性能.实验结果表明,此NiNPs/PEDOT-rGO/GCE可以作为无酶传感器实现对葡萄糖的检测.本方法稳定性高,选择性好,线性范围宽(2μmol/L~58 mmol/L),检出限低至0.7μmol/L,可以用于对葡萄糖的快速、灵敏检测.  相似文献   

2.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) film was prepared on glassy carbon electrode from 0.1 M LiClO4 aqueous solution containing 3,4‐ethylenedioxythiophene (EDOT) monomer and hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), by multiple scan cyclic voltammetry. The effect of oxidation potentials on electropolymerization of EDOT was examined by chronoamperometry and cyclic voltammetric techniques. The results of potentiostatic experiments show that optimum potential range to obtain compact stable film was 0.9 to 1.05 V (vs. Ag/AgCl). At higher positive potential, i.e. above 1.05 V, polymer growth was hindered by passivation effect. The PEDOT film exhibited a strong absorption at 550 nm in the UV‐vis region and also a multicolor electrochromism in different buffer solutions (sky blue‐purple red). Cyclic voltammetric features of PEDOT‐coated electrode in pure supporting electrolyte suggested that charge transfer of the film resembles that of surface‐confined redox species. Finally, the electrocatalytic behavior of PEDOT‐modified electrode was tested towards oxidation of sulfur oxoanions and nitrite using cyclic voltammetry.  相似文献   

3.
5-Aminoindole and 3,4-ethylenedioxythiophene (EDOT) were copolymerized electrochemically on a carbon cloth (CC) electrode in an aqueous sulfuric acid solution. The as-prepared copolymer was characterized by cyclic voltammogram, SEM, and UV-vis and FT-IR spectra through which the electrochemical properties, structure, and composition of the as-obtained copolymer were determined. The electrochemical activity and stability of the as-formed copolymer are significantly improved in comparison with poly(5-aminoindole) due to the incorporation of EDOT units into the conjugated chain. The copolymer film-modified CC electrode was used as substrate for Pt particle deposition (denoted as Pt/copolymer/CC), and then, its catalytic activity towards formic acid electrooxidation was studied. Experimental results indicate that the catalytic activity of Pt/copolymer/CC towards formic acid electrooxidation is enhanced in comparison with that of Pt/homopolymer/CC, which can be attributed to the homogeneous distribution of Pt nanoparticles on the copolymer/CC substrate and the improved electrochemical activity of the copolymer film.  相似文献   

4.
The synthesis of 3,4‐ethylenedioxythiophene (EDOT) derivatives bearing functional groups is described. Their electrochemical characteristics were investigated with cyclic voltammetry and ultraviolet–visible spectroscopy. Various copolymers of EDOT and modified EDOT containing hydroxyl groups were electrochemically prepared. The ability to bind proteins to the surface of these copolymers was investigated through the covalent coupling of glucose oxidase. The obtained materials were used as working electrodes and were shown to be able to amperometrically detect glucose under aerobic and anaerobic conditions. Possible applications of these materials as biosensors are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 738–747, 2002; DOI 10.1002/pola.10159  相似文献   

5.
A diarylethene substituted with 3,4-ethylenedioxythiophene (EDOT) was synthesized to induce electrochemical anodic polymerization. Upon electrochemical oxidation of 1,2-bis(2-methylbenzo[b]thiophene-3-yl)perfluorocyclopentene (BTF)-substituted EDOT at the 6,6′-position (BTFTT), a red-purple polymeric film (PBTFTT) was deposited on a working electrode. A similar film was deposited on an electrode from the solution exposed to UV light through electrochemical oxidation. The film growth was controlled by the cycle numbers in cyclic voltammetry during the electropolymerization. The film thickness was linearly correlated to the potential cycle numbers, with a slope of 17.9 nm/cycle. The IR spectrum of the electrodeposited polymer showed characteristic CC stretching frequency at 1630 and 1481 cm−1 indicating that the BTF units in the polymer are closed.  相似文献   

6.
Four D–A–D type co‐oligomers have been synthesized by Stille condensation between monostannyl derivatives of furan/thiophene/selenophene/3,4‐ethylenedioxythiophene (EDOT) and 4,7‐dibromo‐benzo[1,2,5]oxadiazole. All these co‐oligomers were successfully electrochemically polymerized in dichloromethane and characterized by spectroelectrochemistry. All four polymers possess narrow optical band gap. Spectroelectrochemical studies of polymer films on indium tin oxide revealed that the replacement of donor EDOT with furan/thiophene/selenophene has affected the low‐energy charge‐carrier (bipolaron) formation significantly. Kinetic studies based on chronoamperometry show that the polymer P5 (EDOT‐capped benzo[1,2,5]oxadiazole system) possess better electrochromic property with high transmittance (66%) in visible region than the other copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
An imidazolium-based ionic liquid(IL) modified triphenylamine derivative,namely 1-(4-((4-(diphenylamino)benzoyl) oxy)butyl)-3-methyl imidazole tetrafluoroborate(TPAC_6 IL-BF_4),was designed and synthesized,and further applied with 3,4-ethylene dioxythiophene(EDOT)to prepare conjugated copolymer P(EDOT:TPAC_6 IL-BF_4) via electrochemical polymerization.The cyclic voltammetry curves show that the copolymer P(EDOT:TPAC_6 IL-BF_4) possesses two pairs of redox peaks,which should be ascribed to the redox behaviors of EDOT and triphenylamine.The ultraviolet-visible(UV-Vis) absorption spectrum of P(EDOT:TPAC_6 IL-BF_4) exhibits one maximum absorption peak at 580 nm and a small shoulder characteristic peak at 385 nm under neutral state which are assigned to π-π~* conjugated structure of EDOT and triphenylamine.After being applied at the positive voltage,the copolymer color changes from dark blue to light blue,which is close to the color of poly(3,4-ethylenedioxythiophene)(PEDOT).Surprisingly,the copolymer P(EDOT:TPAC_6 IL-BF_4) shows shorter switching time of 0.37 s,0.30 s at 580 nm and 0.38 s,0.45 s at 1100 nm compared with PEDOT.It is more intriguing that the copolymer P(EDOT:TPAC_6 IL-BF_4) exhibits electrochromism even in free supporting electrolyte.The results confirm that the existence of imidazolium-based ionic liquid has an improvement on the ion diffusion properties and the switching time of conjugated polymer,which may provide a potential direction for the preparation of high-performance electrochromic materials.  相似文献   

8.
Sun JJ  Zhou DM  Fang HQ  Chen HY 《Talanta》1998,45(5):851-856
The electrochemical copolymerization of 3,4-dihydroxybenzoic acid (3,4-DHBA) and aniline was carried out at microdisk gold electrodes by means of cyclic voltammetric sweep. The polymer obtained on the electrode shows good electrochemical activity and high stability even though in neutral and weakly basic media. It was found that the response current of ascorbic acid was greatly enhanced at this composite polymer electrode. Moreover, the anodic overpotential was significantly reduced for about 200 mV (vs. SCE) compared with that obtained at bare gold electrodes. The electrode exhibits a rapid current response (less than 2 s) and a high sensitivity (0.21 AM(-1) cm(-2)). The dependence of response currents on the concentration of ascorbic acid was linear in the range of 1.0x10(-4)-1.0x10(-2) M. In addition this composite polymer modified electrode exhibits a high electrode stability for a long-term use.  相似文献   

9.
以3,4-乙烯二氧噻吩(EDOT)和吡咯-3-甲酸(P3C)为共聚单体,EDOT和P3C分别按物质的量比1∶1,3∶1,5∶1,10∶1配比,通过电化学聚合制得了4种聚(3,4-乙烯二氧噻吩-吡咯-3-甲酸)薄膜,并依次命名为P(EDOT∶P3C)-1,P(EDOT∶P3C)-3,P(EDOT∶P3C)-5和P(EDOT∶P3C)-10.光谱电化学测试结果表明,4种共聚物薄膜都具有优良的电致变色性能,同时具有较好的电化学活性和较高的光学对比度.与聚3,4-乙烯二氧噻吩(PEDOT)相比,P(EDOT∶P3C)能展示更丰富的颜色变化,如P(EDOT∶P3C)-1薄膜随着电压的变化,可呈现从暗红色、浅褐色、灰蓝色到蓝色的变化.此外,基于EDOT和P3C以及钛氧簇[Ti_7(OEt)_(19)O_5(CoBr)],我们还设计合成了含钛共聚物薄膜P(EDOT∶P3C)-1-Ti,该薄膜不仅具有电致变色性能,而且还具有电催化氧化水的活性.  相似文献   

10.
Poly(3,4‐ethylenedioxythiophene)s (PEDOT) represent a class of conjugated polymers that can be potentially used as an electrode material for flexible organic electronics due to their superior conductivity and transparency. In this study, we demonstrate that the conductivity of a PEDOT containing copolymer film can be further enhanced by the oxidative chemical in situ copolymerization of a liquid film spun coated from monomer mixture (3,4‐ethylenedioxythiophene (EDOT) and 3‐thienyl ethoxybutanesulfonate (TEBS)), oxidant (iron(III) p‐toluenesulfonate (Fe(OTs)3)), weak base (imidazole), and solvent (methanol). We investigated that the effect of the processing parameters such as the molar ratios TEBS/EDOT, IM/EDOT, and Fe(OTs)3/EDOT on the surface morphology, optical property, and the conductivity of the resulting copolymer films. These parameters have been optimized to achieve conductivities for the copolymer films as high as 170 S/cm compared with a conductivity of 30 S/cm for the pure PEDOT film synthesized using the same fabrication method. This conductivity enhancement for the copolymer films was found to be resulted from the fact that the addition of TEBS monomer reduces the copolymerization rate, leading to the formation of much more uniform film surface without defects and copolymers of higher molecular weight which increase the conductivity of the resulting copolymer film. The composition of two monomers in the copolymer film is not related to the variation of conductivity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1662–1673, 2008  相似文献   

11.
采用Fe~(3+)离子交联的方法制备氧化石墨烯水凝胶,经化学还原制备出一种新型的三维多孔石墨烯薄膜材料命名为rGO-Fe;通过电化学聚合法在rGO-Fe基底上进一步制备了一种三维多孔石墨烯/含钛共轭聚合物复合薄膜材料,命名为r GO-Fe/P(EDOT:P3C)-1-Ti。作为一种新型复合薄膜材料,rGO-Fe/P(EDOT:P3C)-1-Ti较rGO-Fe具有更好的抗拉伸性能,平均厚度为3μm的rGO-Fe/P(EDOT:P3C)-1-Ti薄膜,可承受载荷拉力0.97 N,优于相同厚度的rGO-Fe薄膜(0.76 N)。将rGO-Fe/P(EDOT:P3C)-1-Ti薄膜作为自支撑电极制备了柔性全固态超级电容器,表现出优良的电容性能,且在弯折状态下仍能正常工作。当电流密度为0.1 A?g~(-1)时,该柔性全固态超级电容器的质量比容量为71.13?F?g~(-1),面积比容量为101 mF?cm~(-2),当电流密度为0.6 A?g~(-1)时,其质量比容量为18.14 F?g~(-1),面积比容量为25.8 mF?cm~(-2)。  相似文献   

12.
[reaction: see text] An unsymmetrical analogue of 3,4-ethylenedioxythiophene (EDOT) has been synthesized by transetherification of 3,4-dimethoxythiophene. Electropolymerization leads to a stable electroactive polymer with electrochemical and electronic properties intermediate between those of the two symmetrical parent polymers poly(EDOT) and poly(3,4-ethylenedithiathiophene). Experimental work shows that the 2- and 5-positions possess a different reactivity, thus opening the possibility of synthesizing regioregular oligomers or polymers.  相似文献   

13.
在氧化铟锡透明导电玻璃(ITO)电极上电化学聚合依次得到聚4,4',4″-三[4-(2-联噻吩基)苯基]胺(PTBTPA)和聚3,4-乙烯二氧噻吩(PEDOT)薄膜, 从而可控制备出叠层复合薄膜. 由红外光谱(FTIR)和场发射扫描电镜(SEM)表征了复合薄膜. 紫外-可见吸收光谱和电化学测试结果表明, 相对于PTBTPA薄膜(中性态橙色到氧化态深灰色)与PEDOT薄膜(中性态深蓝色到氧化态浅蓝色)的颜色变化, 叠层复合薄膜在不同的电压下能够展现出从橙色→蓝色→墨绿色的颜色变化, 并保持了较好的电化学活性和光学对比度. 这主要源于中性态吸收光谱和颜色显示互补的电致变色材料的选择. 本文提供了一种简单有效的制备多色乃至全色显示的电致变色材料的方法, 该方法同样适用于其它聚合物电致变色材料体系.  相似文献   

14.
本文从光活性高的3,4-乙烯二氧噻吩(EDOT)出发,在其两个活性位点上分别引入了一个乙酰基噻吩基团和一个乙酰基基团,合成了一种结构新颖的、适用于UV-LED光固化体系的光引发剂2-(2-乙酰基噻吩)-5-乙酰基-3,4-乙烯二氧噻吩(S-2)。利用核磁共振氢谱对其结构进行了表征,并测试了其紫外吸收特性和热稳定性,还利用实时红外技术对其光引发活性进行了测试。结果表明,此光引发剂在365~405 nm范围内有较好的吸收,其紫外吸收性能和热稳定性优于异丙基硫杂蒽酮(ITX),光引发活性与ITX相当。  相似文献   

15.
Two novel heterocycle‐fluorene‐heterocycle monomers, 2,2′‐(9,9‐dioctyl‐9H‐fluorene‐2,7‐diyl)dithiophene (Th‐F‐Th) and 5,5′‐(9,9‐dioctyl‐9H‐fluorene‐2,7‐diyl)bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxine) (EDOT‐F‐EDOT), were synthesized via Stille coupling reaction and electropolymerized to form corresponding polymers P(Th‐F‐Th) and P(EDOT‐F‐EDOT). Furthermore, the optoelectronic properties of the obtained monomers and polymers were explored using cyclic voltammetry (CV), UV–vis, and emission spectra and in situ spectroelectrochemical techniques. The band gap values of monomers calculated by DFT were 3.75 eV for EDOT‐F‐EDOT and 4.03 eV for Th‐F‐Th, while that of P(EDOT‐F‐EDOT) and P(Th‐F‐Th) were brought down to 1.70 and 2.10 eV, respectively. Both polymers exhibited excellent redox activity and electrochromic performance. P(EDOT‐F‐EDOT) exhibited a maximum optical contrast of 25.8% at 500 nm in visible region with a response time of 1.2 s. In addition, the coloration efficiency of P(EDOT‐F‐EDOT) was calculated to be 220 cm2 C?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 325–334  相似文献   

16.
2‐((2,3‐Dihydrothieno[3,4‐b]dioxin‐2‐yl)methoxy)methyl oxirane (EDOT‐MO) was successfully synthesized by the reaction of epichlorohydrin with hydroxymethylated‐3,4‐ethylenedioxylthiophene (EDOT‐MeOH), which was synthesized via a simple four‐step sequence. Poly(hydroxymethylated‐3,4‐ethylenedioxylthiophene) (PEDOT‐MeOH) and poly(2‐((2,3‐dihydrothieno[3,4‐b]dioxin‐2‐yl)methoxy)methyl oxirane) (PEDOT‐MO) were electrosynthesized through electropolymerization of EDOT‐MeOH and EDOT‐MO, respectively. Structural, electrochemical, optical, and thermal properties of as‐formed polymers were investigated by FTIR, cyclic voltammetry, UV–vis, and thermogravimetry. Spectroelectrochemistry studies demonstrated that PEDOT‐MeOH and PEDOT‐MO could be reversibly oxidized and reduced accompany with obvious color changes. Further kinetic studies demonstrated that the introduction of hydroxymethyl or ethylene oxide group significantly improved electrochromic properties of 3,4‐ethylenedioxythiophene (PEDOT) and resulted in high contrast ratios (57.3% at 585 nm) and coloration efficiencies (338.5 cm2 C?1), low switching voltages, and fast response time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1989–1999  相似文献   

17.
Synthesis of two novel donor – acceptor – donor type monomers containing benzimidazole as the acceptor unit and thiophene and 3,4-ethylenedioxythiophene (EDOT) as the donor units were performed. 2-(Perfluorophenyl)-4,7-di(thiophen-2-yl)-1H-benzo[d]imidazole and 4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-(perfluorophenyl)-1H-benzo[d]imidazole were synthesized successfully and polymerized electrochemically. The electrochemical and spectroelectrochemical studies of the polymers were studied. The effect of electron donating moieties on the optical properties of electrochemically polymerized polymers was investigated. Both polymers were p type dopable and possessed multi-chromic property. Optical studies demonstrated that the polymer based on EDOT unit (P2) resulted in lower band gap since EDOT is higher electron donating group than thiophene.  相似文献   

18.
DNA which binds monocationic [60]fullerene (1) and tetracationic porphyrin (TMPyP) was readily fabricated by electrochemical oxidative polymerization of 3.4-ethylenedioxythiophene (EDOT) and the resultant poly(EDOT) composite was deposited on an ITO electrode as a stable thin film. Spectral and CV analyses established that one 1 and one TMPyP are bound per 57 nucleobase units, that is, every three pitches of DNA. Photoirradiation of this 1/TMPyP/DNA-poly(EDOT) film generated a photocurrent in 3.8% quantum yield, which was much higher than those obtained from 1/DNA and TMPyP/DNA systems. One can conclude, therefore that the photoexcited energy of TMPyP is transferred to 1, which is collected by the electron-conducting poly(EDOT) film. The present paper shows that DNA is useful as a scaffold to arrange redox-active couples in a one-dimensional matrix.  相似文献   

19.
Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is a widely used conductive aqueous dispersion synthesized by using emulsion polymerization method. To further enhance its solution processability and conductivity of PEDOT derivatives, we proposed to replace the nonconductive PSS with conductive poly[2‐(3thienyl)‐ethoxy‐4‐butylsulfonate] (PTEB) as surfactant for the emulsion polymerization of PEDOT. The reaction involved colloid stabilization and doping in one step, and yielded PEDOT:PTEB composite nanoparticles with high electrical conductivity. Contrary to its counterpart containing nonconductive surfactant, PEDOT: PTEB showed increasing film conductivity with increasing PTEB concentration. The result demonstrates the formation of efficient electrical conduction network formed by the fully conductive latex nanoparticles. The addition of PTEB for EDOT polymerization significantly reduced the size of composite particles, formed stable spherical particles, enhanced thermal stability, crystallinity, and conductivity of PEDOT:PTEB composite. Evidence from UV–VIS and FTIR measurement showed that strong molecular interaction between PTEB and PEDOT resulted in the doping of PEDOT chains. X‐ray analysis further demonstrated that PTEB chains were intercalated in the layered crystal structure of PEDOT. The emulsion polymerization of EDOT using conducting surfactant, PTEB demonstrated the synergistic effect of PTEB on colloid stability and intercalation doping of PEDOT during polymerization resulting in significant conductivity improvement of PEDOT composite nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2536–2548, 2008  相似文献   

20.
采用修饰Langmuir-Blodget(LB)膜法以二十烷酸(AA)LB膜为模板,通过3,4-亚乙基二氧噻吩(EDOT)单体在LB膜亲水基团间聚合,制备了二十烷酸/聚(3,4-亚乙基二氧噻吩)(AA/PEDOT)复合LB膜.UV-Vis、FTIR和XPS分析表明EDOT在多层膜中有效聚合,生成了PEDOT导电聚合物;X射线衍射(XRD)和二次离子质谱(SIMS)分析表明薄膜具有较好的层状有序结构,进一步研究发现EDOT在AA多层膜中的聚合破坏了原有LB膜的有序性,这可能与聚合过程对层状结构产生的破坏作用有关;采用四探针仪及半导体测试仪研究了薄膜导电性能,发现AA/PEDOT多层膜的电导率随处理时间的变化产生突变,这与多层膜中导电通道的"逾渗"有关,在有效导电网络连通后电导率发生了突变.测试结果还表明AA层和PEDOT层之间具有较为明显的界面,PEDOT显示出较好的定域性,薄膜具有很好的层状有序结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号