首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of bridged triazolo[4,5-d]pyridazine based energetic materials were optimized at B3LYP/6-311G(d, p) level of density functional theory (DFT), and their detonation properties and sensitivities were calculated. The results show that the  NN bridge/ N3 group were beneficial to improve values of heats of formation while  NN bridge/ C(NO2)3 group can improve detonation properties remarkably. In view of the sensitivities, compound F2 possesses the minimum values of impact sensitivity which reveals that  NHNH bridge/ C(NO2)3 group will decrease the stability of the designed compounds. Take both of detonation properties and sensitivities into consideration, compounds C8, E7, E8, F8 were screened as candidates of potential energetic materials since these compounds possess similar detonation properties and sensitivities values to those of RDX. All the calculated results were except to shine lights on the design and synthesis of novel high energy density materials.  相似文献   

2.
A new family of asymmetric oxadiazole based energetic compounds were designed. Their electronic structures, heats of formation, detonation properties and stabilities were investigated by density functional theory. The results show that all the designed compounds have high positive heats of formation ranging from 115.4 to 2122.2 kJ mol−1. −N− bridge/−N3 groups played an important role in improving heats of formation while −O− bridge/−NF2 group made more contributions to the densities of the designed compounds. Detonation properties show that some compounds have equal or higher detonation velocities than RDX, while some other have higher detonation pressures than RDX. All the designed compounds have better impact sensitivities than those of RDX and HMX and meet the criterion of thermal stability. Finally, some of the compounds were screened as the candidates of high energy density compounds with superior detonation properties and stabilities to that of HMX and their electronic properties were investigated.  相似文献   

3.
In this study, based on two model nitramine compounds hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5, 7-tetrazocine (HMX), two series of new energetic molecules were designed by replacing carbon atoms in the ring with different amounts of boron atoms, their structures and performances were investigated theoretically by the density functional theory method. The results showed that the boron replacement could affect the molecular shape and electronic structure of RDX and HMX greatly, and then would do harm to the main performance like the heat of formation, density, and sensitivity. However, the compound RDX-B2 is an exception; it was formed by replacing two boron atoms into the system of RDX and has the symmetric boat-like structure. Its oxygen balance (4.9%), density (1.91 g/cm3), detonation velocity (8.85 km/s), and detonation pressure (36.9 GPa) are all higher than RDX. Furthermore, RDX-B2 has shorter and stronger N NO2 bonds than RDX, making it possesses lower sensitivity (45 cm) and better thermal stability (the bond dissociation energy for the N NO2 bond is 204.7 kJ/mol) than RDX. Besides, RDX-B1 and HMX-B4 also have good overall performance; these three new molecules may be regarded as a new potential candidate for high energy density compounds.  相似文献   

4.
Theoretical studies have been carried out on the halogen bonding interaction between para substituted chlorobenzene (Y C6H4Cl, Y = H, NH2, CH3, F, CN, NO2) and N(CH3)3 using ab initio MP2/aug‐cc‐pVDZ and DFT based wB97XD/6‐311++G(d,p) methods. The positive electrostatic potential (VS,max) on the Cl atom and the heterolytic bond breaking enthalpy of the C Cl bond have been calculated and their role on halogen bonding is discussed. The heterolytic bond breaking enthalpy of the C Cl bond is proposed as a measure of the strength of the σ‐hole on Cl atom. The binding strength of the complexes ranging between −6.13 kJ mol−1 and −9.29 kJ mol−1 are linearly related to the VS,max of the Cl atom and the bond breaking enthalpy of the C Cl bond. In addition, energy decomposition analysis was performed on the halogen bonded complexes via symmetry adapted perturbation theory (SAPT) to predict the dominant energy component and the nature of the N···Cl interaction.  相似文献   

5.
A series of highly energetic organic salts comprising a tetrazolylfuroxan anion, explosophoric azido or azo functionalities, and nitrogen-rich cations were synthesized by simple, efficient, and scalable chemical routes. These energetic materials were fully characterized by IR and multinuclear NMR (1H, 13C, 14N, 15N) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Additionally, the structure of an energetic salt consisting of an azidotetrazolylfuroxan anion and a 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium cation was confirmed by single-crystal X-ray diffraction. The synthesized compounds exhibit good experimental densities (1.57–1.71 g cm−3), very high enthalpies of formation (818–1363 kJ mol−1), and, as a result, excellent detonation performance (detonation velocities 7.54–8.26 kms−1 and detonation pressures 23.4–29.3 GPa). Most of the synthesized energetic salts have moderate sensitivity toward impact and friction, which makes them promising candidates for a variety of energetic applications. At the same time, three compounds have impact sensitivity on the primary explosives level (1.5–2.7 J). These results along with high detonation parameters and high nitrogen contents (66.0–70.2 %) indicate that these three compounds may serve as potential environmentally friendly alternatives to lead-based primary explosives.  相似文献   

6.
A multilevel approach that combines high‐level ab initio quantum chemical methods applied to a molecular model of a single, strain‐free Si O Si bridge has been used to derive accurate energetics for Si O bond cleavage. The calculated Si O bond dissociation energy and the activation energy for water‐assisted Si O bond cleavage of 624 and 163 kJ mol−1, respectively, are in excellent agreement with values derived recently from experimental data. In addition, the activation energy for H2O‐assisted Si O bond cleavage is found virtually independent of the amount of water molecules in the vicinity of the reaction site. The estimated reaction energy for this process including zero‐point vibrational contribution is in the range of −5 to 19 kJ mol−1. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
The calculated difference in the standard heat of formation Δ ΔfH°(298.15) of n- and i-C4H3 free radicals is 37.9 kJ mol−1 for G3MP2B3 and 45.0 kJ mol−1 for CCSD(T)-CBS (W1U) calculations, which seems to preclude the direct even-carbon radical pathway to benzene and higher PAH (polycyclic aromatic hydrocarbon) formation including soot in a hydrocarbon flame. For the phenyl-type σ-radicals listed in the title, absolute values of ΔfH°(298.15) have been calculated using G3MP2B3-computed values of bond dissociation energies D°(298.15) and combined with experimental values of ΔfH° (298.15) for the parent hydrocarbon because of a slight systematic overprediction of the thermodynamic stability of large PAHs by the applied computational G3MP2B3 method. Standard enthalpies of formation ΔfH°(298.15) as well as absolute entropies S° and heat capacities C°p are given for a series of π- and σ-free radicals important to combustion as a function of temperature. A spread of roughly 40 kJ mol−1 in the average C H bond strength of PAH leading to σ-radicals has been calculated, the lowest leading to 4-phenanthryl (463.6 kJ mol−1), the highest leading to 2-biphenylyl radical (502.5 kJ mol−1). © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 395–415, 2008  相似文献   

8.
A series of novel energetic materials comprising of azo-bridged furoxanylazoles enriched with energetic functionalities was designed and synthesized. These high-energy materials were thoroughly characterized by IR and multinuclear NMR (1H, 13C, 14N) spectroscopy, high-resolution mass spectrometry, elemental analysis, and differential scanning calorimetry (DSC). The molecular structures of representative amino and azo oxadiazole assemblies were additionally confirmed by single-crystal X-ray diffraction and X-ray powder diffraction. A comparison of contributions of explosophoric moieties into the density of energetic materials revealed that furoxan and 1,2,4-oxadiazole rings are the densest motifs while the substitution of the azide and amino fragments on the nitro and azo ones leads to an increase of the density. Azo bridged energetic materials have high nitrogen-oxygen contents (68.8–76.9 %) and high thermal stability. The synthesized compounds exhibit good experimental densities (1.62–1.88 g cm−3), very high enthalpies of formation (846–1720 kJ mol−1), and, as a result, excellent detonation performance (detonation velocities 7.66–9.09 km s−1 and detonation pressures 25.0–37.7 GPa). From the application perspective, the detonation parameters of azo oxadiazole assemblies exceed those of the benchmark explosive RDX, while a combination of high detonation performance and acceptable friction sensitivity of azo(1,2,4-triazolylfuroxan) make it a promising potential alternative to PETN.  相似文献   

9.
The molecular structure, heats of formation, energetic properties, strain energy and thermal stability for a series of substituted difurazano[3,4-b:3′,4′-e]piperazines and their analogues were studied using density functional theory. The results show that it is a useful way to increase the heat of formation values of energetic compounds by incorporating a five- or six-membered aromatic heterocycle to construct a fused ring system. The calculated detonation properties reveal that introducing one heterocycle to construct a fused ring structure greatly enhances their detonation properties. The substitution of the –NF2, –NO2 or –NHNO2 group is very useful for enhancing the detonation performance for the substituted derivatives. According to molecular structure and natural bond orbital analysis, the introduction of the –NO2, –NF2 or –NHNO2 group decreases the stability of the substituted derivative. There is a weak N–NO2 bond conjugation in the NO2-substituted derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that all the unsubstituted derivatives have good thermal stability, but the substitution of –NO2 or –NF2 remarkably decreases their stability. Considering the detonation performance and thermal stability, eight compounds may be considered as the potential candidates of high-energy density materials with less sensitivity.  相似文献   

10.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of bridged ditetrazole derivatives with different linkages and substituent groups. The results show that the ? N3 group and azo bridge (? N?N? ) play a very important role in increasing the HOF values of the ditetrazole derivatives. The effects of the substituents on the HOMO–LUMO gap are combined with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that the ? NO2, ? NF2, ? N?N? , or ? N(O)?N? group is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N? N bond in the ring or outside the ring is the weakest one and the N? N cleavage is possible to happen in thermal decomposition. Overall, the ? CH2? CH2? or ? NH? NH? group is an effective bridge for enhancing the thermal stability of the bridged ditetrazoles. Because of their desirable detonation performance and thermal stability, five compounds may be considered as the potential candidates of high‐energy density materials (HEDMs). These results provide basic information for the molecular design of novel HEDMs. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

11.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and pyrolysis mechanism of a series of trinitromethyl-substituted heterocycle (including triazole, tetrazole, furazan, tetrazine, and fused heterocycles) derivatives. It is found that the fused ring, tetrazine, and tetrazole are effective structural units for increasing the HOFs of the derivatives. The substitution of the combination of nitro and trinitromethyl is very useful for improving their HOFs. The calculated energetic properties indicate that the combination of the nitro and trinitromethyl is very helpful for improving their detonation properties and oxygen balances (OB). Most of the title compounds have a good OB over zero. The OB of six compounds are very high and over 22. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N–O bond in the ring is a trigger bond for BIII-1, CI-3, and CI-4, and the ring–NO2 and (NO2)2C–NO2 bond cleavage is likely to happen in thermal decomposition for the remaining compounds. Considering the detonation performance and thermal stability, seven compounds could be regarded as potential candidates for high-energy compounds. Four compounds may be used as the novel high-energy oxidizers.  相似文献   

12.
Theoretically new high‐energy‐density materials (HEDM) in which the hydrogens on RDX and β‐HMX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine, respectively) were sequentially replaced by (N NO2)x functional groups were designed and evaluated using density functional theory calculations in combination with the Kamlet–Jacobs equations and an atoms‐in‐molecules (AIM) analysis. Improved detonation properties and reduced sensitivity compared to RDX and β‐HMX were predicted. Interestingly, the RDX and β‐HMX derivatives having one attached N NO2 group [RDX‐(NNO2)1 and HMX‐(NNO2)1] showed excellent detonation properties (detonation velocities: 9.529 and 9.575 km·s−1, and detonation pressures: 40.818 and 41.570 GPa, respectively), which were superior to the parent compounds. Sensitivity estimations obtained by calculating impact sensitivities and HOMO‐LUMO gaps indicated that RDX‐(NNO2)1 and HMX‐(NNO2)1 were less stable than RDX and HMX but more stable than any of the other derivatives. This method of sequential NNO2 group attachment on conventional HEDMs offers a firm basis for further studies on the design of new explosives. Furthermore, the newly found structures may be promising candidates for better HEDMs.  相似文献   

13.
The technique of laser flash photolysis has been used to set limits on the rate constants for the bimolecular reactions of SiH2 with methane (CH4) and tetramethylsilane (SiMe4) at both ambient and elevated temperatures (ca 600 K). These limits show that the energy barriers to insertion reactions of SiH2 in the C H bonds of CH4 are at least 45(±6) kJ mol−1 and in the C H and/or Si C bonds of SiMe4 are at least 23(±6) kJ mol−1. The best thermochemical estimate of the activation energy for SiH2+CH4 is 59(±12) kJ mol−1. Reasons for the greatly diminished reactivity of SiH2 with C H as compared with Si H bonds are discussed. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 393–395, 1999  相似文献   

14.
15.
The gas-phase reactions of O . (H2O)n and OH(H2O)n, n=20–38, with nitrogen-containing atmospherically relevant molecules, namely NOx and HNO3, are studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and theoretically with the use of DFT calculations. Hydrated O . anions oxidize NO . and NO2 . to NO2 and NO3 through a strongly exothermic reaction with enthalpy of −263±47 kJ mol−1 and −286±42 kJ mol−1, indicating a covalent bond formation. Comparison of the rate coefficients with collision models shows that the reactions are kinetically slow with 3.3 and 6.5 % collision efficiency. Reactions between hydrated OH anions and nitric oxides were not observed in the present experiment and are most likely thermodynamically hindered. In contrast, both hydrated anions are reactive toward HNO3 through proton transfer from nitric acid, yielding hydrated NO3. Although HNO3 is efficiently picked-up by the water clusters, forming (HNO3)0–2(H2O)mNO3 clusters, the overall kinetics of nitrate formation are slow and correspond to an efficiency below 10 %. Combination of the measured reaction thermochemistry with literature values in thermochemical cycles yields ΔHf(O(aq.))=48±42 kJ mol−1 and ΔHf(NO2(aq.))=−125±63 kJ mol−1.  相似文献   

16.
4-Amino-1,2,4-triazolium nitrate (4-ATN) is an energetic and non-sensitive ionic liquid, which was introduced as a good candidate in previous works for the replacement of 2,4,6-trinitrotoluene (TNT) in melt-cast explosives. Since previous studies used pure nitric acid for nitration of 4-ATN, the effect of the use of low price industrial nitric acids (50 %, 70 % and 98 %) is investigated on the percent yields of 4-ATN. The thermogravimetric and differential scanning calorimetry (TGA/DSC) are done on the synthesized 4-ATN with impure nitric acid at a heating rate of 10 K · min–1 by the vacuum system. The obtained TGA/DSC curves confirm decomposition of 4-ATN involving melting and dissociation. Derivative thermogravimetric (DTG) curves of 4-ATN at various heating rates are applied to obtain activation energy of thermolysis by several model-free techniques. The calculated activation energies are in the range 78.7–87.7 kJ · mol–1, which are about 10 kJ · mol–1 more than the reported activation energy of industrial TNT (purity 98.2 %), i.e. 66–70 kJ · mol–1. Assessments of detonation performance of 4-ATN are also compared with TNT, which show higher detonation performance of 4-ATN. Thus, 4-ATN can be used with nitramine compounds as melt-cast explosives with higher thermal stability and detonation performance than corresponding nitramine compound/TNT explosives.  相似文献   

17.
The B3LYP/6-31G** method was used to investigate IR and Raman spectra, heat of formation, and thermodynamic properties of a new designed polynitro cage compound 1,3,5,7,9,11-hexanitrotetradecahydro-1H-1,3,4,5,7,7b,9,11,12a,12b1,12b2,13-dodecaaza-4,8,12-(epimethanetriyl)cyclohepta[l]cyclopenta[def]phenanthrene. The detonation and pressure were evaluated using the Kamlet–Jacobs equations based on the theoretical density and HOFs. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that N8–NO2 bond is predicted to be the trigger bond during pyrolysis. There exists an essentially linear relationship between the WBIs of N–NO2 bonds and the charges – $ Q_{{{\text{NO}}_{ 2} }} $ on the nitro groups. The crystal structure obtained by molecular mechanics belongs to the P21 space group, with lattice parameters Z = 2, a = 11.4658 Å, b = 15.2442 Å, c = 10.2451 Å, ρ = 2.07 g cm?3. The designed compound has high thermal stability and good detonation properties and is a promising high-energy density compound.  相似文献   

18.
In the title compounds, C7H6ClN2O+·NO3 and C7H6ClN2O+·ClO4, the ions are connected by N—H...O hydrogen bonds and halogen interactions. Additionally, in the first compound, co‐operative π–π stacking and halogen...π interactions are observed. The energies of the observed interactions range from a value typical for very weak interactions (1.80 kJ mol−1) to one typical for mildly strong interactions (53.01 kJ mol−1). The iminium cations exist in an equilibrium form intermediate between exo‐ and endocyclic. This study provides structural insights relevant to the biochemical activity of 2‐amino‐5‐chloro‐1,3‐benzoxazole compounds.  相似文献   

19.
A new cage compound, 3, 5, 8, 10, 11, 12-hexanitro-3, 5, 8, 10, 11, 12-hexaazatetracyclo [5.5.1.12,6.04,9] dodecane (HNHATCD, I) as well as its –ONO2 (II) and –N3 (III) derivatives were proposed in the present work. Their molecular structures were optimized at the B3LYP/6-31G(d,p) level of density functional theory. Heat of formation, strain energy, detonation performance, and thermal stability were studied. Results show that the –N3 group greatly increases the heat of formation, but decreases the strain energy and density, and it is much more helpful for enhancing the detonation energy than the –NO2 and –ONO2 groups. An analysis of bond dissociation energies (BDEs) of the weakest bonds implies that the BDE of –N3 derivatives is the smallest but it is still larger than 120 kJ mol?1, revealing that these designed compounds have a high thermal stability. Considering the detonation performance and thermal stability, I and II may be potential candidates of high energy density materials.  相似文献   

20.
Highly energetic 1-(azidomethyl)-5H-tetrazole (AzMT, 3 ) has been synthesized and characterized. This completes the series of 1-(azidoalkyl)-5H-tetrazoles represented by 1-(azidoethyl)-5H-tetrazole (AET) and 1-(azidopropyl)-5H-tetrazole (APT). AzMT was thoroughly analyzed by single-crystal X-ray diffraction experiments, elemental analysis, IR spectroscopy and multinuclear (1H, 13C, 14N, 15N) NMR measurements. Several energetic coordination compounds (ECCs) of 3d metals (Mn, Fe, Cu, Zn) and silver in combination with anions such as (per)chlorate, mono- and dihydroxy-trinitrophenolate were prepared, giving insight into the coordination behavior of AzMT as a ligand. The synthesized ECCs were also analyzed by X-ray diffraction experiments, elemental analysis, and IR spectroscopy. Differential thermal analysis for all compounds was conducted, and the sensitivity towards external stimuli (impact, friction, and ESD) was measured. Due to the high enthalpy of formation of AzMT (+654.5 kJ mol−1), some of the resulting coordination compounds are extremely sensitive, yet are able to undergo deflagration-to-detonation transition (DDT) and initiate pentaerythritol tetranitrate (PETN). Therefore, they are to be ranked as primary explosives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号