共查询到20条相似文献,搜索用时 15 毫秒
1.
Functionalized fullerenes have shown interesting biomedical applications as potential phototherapeutic agents. The hydrophobic carbon sphere of fullerene C60 can be substituted by cationic groups to obtain amphiphilic structures. These compounds absorb mainly UV light, but absorption in the visible region can be enhanced by anchoring light-harvesting antennas to the C60 core. Upon photoexcitation, fullerenes act as spin converters by effective intersystem crossing. From this excited state, they can react with ground state molecular oxygen and other substrates to form reactive oxygen species. This process leads to the formation of singlet molecular oxygen by energy transfer or superoxide anion radical by electron transfer. Photodynamic inactivation experiments indicate that cationic fullerenes are highly effective photosensitizers with applications as broad-spectrum antimicrobial agents. In these structures, the hydrophobic character of C60 improves membrane penetration, while the presence of positive charges increases the binding of the fullerene derivatives with microbial cells. Herein, we summarize the progress of antimicrobial photodynamic inactivation based on substituted fullerenes specially designed to improve the photodynamic activity. 相似文献
2.
Yipeng Li Qi Yu Pengli Gao Huiran Yang Tianci Huang Shujuan Liu Qiang Zhao 《Tetrahedron letters》2018,59(27):2704-2707
We design an organic photosensitizer with a donor-π-acceptor configuration. The photosensitizer exhibits aggregation-induced emission characteristics and efficient singlet oxygen production in the aggregated state. It is then enveloped into the water-soluble micelle to afford a nanoprobe. The water-soluble nanoprobe keeps the photosensitizer in the aggregation state and is used for imaging-guided photodynamic ablation of cancer cells. 相似文献
3.
Nowadays, both cancer and infections caused by antibiotic resistant microorganisms are problems that affect the entire planet. Phototherapy (namely photodynamic therapy (PDT) and photodynamic inactivation (PDI) of microorganisms) are an alternative method for the treatment of these diseases. That requires adequate photosensitizers and, in this sense, boron-dipyrromethenes (BODIPYs) have interesting properties to act as phototherapeutic agents. In the present review, first, we describe the different strategies used to increase reactive oxygen species production. Then, we explain different architectures developed aiming to enhance the solubility of BODIPYs in biological media in order to optimize their targeting and delivery into the cells to be treated. Finally, we discuss the design of BODIPYs that are activated by specific stimuli present in the target tissues, allowing increasing the selectivity of the treatment. The data presented and discussed here show that BODIPYs are outstanding photosensitizers for the treatment of tumors and infections in the presence of oxygen and light. 相似文献
4.
抗生素的误用和滥用,使越来越多的耐药细菌出现,对人类构成致命威胁。近年来,聚集诱导发光材料的发展和生物学科的交叉融合,为治疗细菌感染提供了许多创新思路。相对于紫外/可见光,近红外(NIR)光具有优异的组织深度渗透性和安全性等独特优势,有利于构建光动力抗菌平台进行深度治疗。随着对聚集诱导发光分子(AIEgens)设计及应用的不断探索,AIEgens在光动力抗菌治疗中表现出巨大的应用潜力。本文综述了NIR发光的AIEgens通过光动力疗法治疗细菌感染的研究进展,讨论了不同结构的聚集诱导发光材料存在的主要问题以及该领域当前的挑战和前景。 相似文献
5.
《Arabian Journal of Chemistry》2023,16(4):104583
Resistance to antimicrobial drugs is an impending healthcare problem of growing significance. In the post-antibiotic era, there is a huge push to develop new tools for effectively treating bacterial infections. Photodynamic therapy involves the use of a photosensitizer that is activated by the use of light of an appropriate wavelength in the presence of oxygen. This results in the generation of singlet oxygen molecules that can kill the target cells, including cancerous cells and microbial cells. Photodynamic therapy is shown to be effective against parasites, viruses, algae, and bacteria. To achieve high antimicrobial activity, a sufficient concentration of photosensitizer should enter the microbial cells. Generally, photosensitizers tend to aggregate in aqueous environments resulting in the weakening of photochemical activity and lowering their uptake into cells. Nanocarrier systems are shown to be efficient in targeting photosensitizers into microbial cells and improve their therapeutic efficiency by enhancing the internalization of photosensitizers into microbial cells. This review aims to highlight the basic principles of photodynamic therapy with a special emphasis on the use of nanosystems in delivering photosensitizers for improving antimicrobial photodynamic therapy. 相似文献
6.
We utilized semiconducting polymer do-PFDTBT, photosensitizer ZnPc and functional polymer PSMA to prepare carboxyl Pdots. The carboxyl Pdots were modified with cell penetrating peptides (R8) to prepare peptide coated-Pdots, which could enhance the cell penetration and photodynamic effect. 相似文献
7.
Xiaolong Hu Shuna Wang Qinghua Luo Binghui Ge Qin Cheng Chen Dong Jiahui Xu Haizhen Ding Mingsheng Xu Antonio Claudio Tedesco Xin Huang Renquan Zhang Hong Bi 《中国化学快报》2021,32(7):2287-2291
Recently, photodynamic therapy (PDT) has been extensively applied in clinical and coadjuvant treatment of various kinds of tumors. However, the photosensitizer (PS) of PDT still lack of high production of singlet oxygen (1O2), low cytotoxicity and high biocompatibility. Herein, we propose a facile method for establishing a new core-shell structured Sn nanocluster@carbon dots (CDs) PS. Firstly, Sn4+@S-CDs complex is synthesized using the sulfur-doped CDs (S-CDs) and SnCl4 as raw materials, and subsequently the new PS (Sn nanocluster@CDs) is obtained after vaporization of Sn4+@S-CDs solution. Remarkably, the obtained Sn nanocluster@CDs show an enhanced fluorescence as well as a higher 1O2 quantum yield (QY) than S-CDs. The high 1O2 QY (58.3%) irradiated by the LED light (400–700 nm, 40 mW/cm2), induce the reduction of 4T1 cancer cells viability by 25%. More intriguingly, no visible damage happens to healthy cells, with little impact on liver tissue due to renal excretion, both in vitro and in vivo experiments demonstrate that Sn nanocluster@CDs may become a promising PS, owning a high potential for application in PDT. 相似文献
8.
Hooi Ling Kee Jayeeta Bhaumik James R. Diers Pawel Mroz Michael R. Hamblin David F. Bocian Jonathan S. Lindsey Dewey Holten 《Journal of photochemistry and photobiology. A, Chemistry》2008,200(2-3):346-355
The photophysical properties of four imidazolium-substituted metalloporphyrins have been assessed to gain insights into the relative efficacy of the compounds for photodynamic therapy (PDT). A set of zinc(II), palladium(II), and chloro-indium(III) porphyrins all bear a net positive charge owing to the diethylimidazolium unit; one zinc chelate bears a negative charge owing to a bis(sulfobutyl)imidazolium unit. The photophysical properties of the cationic and anionic zinc porphyrins are very similar to one another in organic solvents, phosphate-buffered saline, and in the presence of bovine serum albumin. The properties of the zinc and palladium porphyrins bearing charged peripheral groups are generally similar to those of neutral analogs in organic solvents. The palladium porphyrin shows an essentially quantitative yield (≥0.99) of the triplet excited state compared to the zinc porphyrins (0.9), and all are quantitatively quenched (at the diffusion limit) by molecular oxygen in air-saturated fluid solution. If the rate constant and yield of quenching of the triplet excited state by energy or electron transfer to molecular oxygen is the same in the cellular environment as in solution, then these processes combined with the triplet yield contribute only a factor of 1.3 to the higher PDT activity of analogous palladium versus zinc porphyrins, which is much smaller than what is observed. Therefore, other factors such as transient reduction of the excited porphyrin or delivery to the target site must predominantly underlie the difference in PDT efficacy of these sensitizers. 相似文献
9.
Xingjie Zhang Zhi Meng Zhiqiang Ma Junhong Liu Guiyan Han Fujia Ma Ningyang Jia Zhenyuan Miao Wannian Zhang Chunquan Sheng Jianzhong Yao 《中国化学快报》2019,30(1):247-249
Eight new water-soluble amino acid derivatives of chlorin p6 ethers 6a-h were designed and synthesized using purpurin-18 (2) as key intermediate. All target compounds exhibited better phototoxicity than talaporfin and the most phototoxic compound 6d showed IC50 values of 0.20 μmol/L against A549 cell and 0.41 μmol/L against B16-F10 cell, which represented 31- and 24-fold increase of PDT antitumor efficacy compared to talaporfin. 相似文献
10.
Bacteriochlorophyll-a as photosensitizer for photodynamic treatment of transplantable murine tumors.
Barbara W. Henderson Adam B. Sumlin Barbara L. Owczarczak Thomas J. Dougherty 《Journal of photochemistry and photobiology. B, Biology》1991,10(4):303-313
Bacteriochlorophyll-a (bChla), which absorbs light of 780 nm wavelength, was tested for in vivo photodynamic activity in the SMT-F and RIF transplantable mouse tumor systems. High performance liquid chromatography (HPLC) analysis of tissue extracts showed that bChla was rapidly degraded in vivo to bacteriopheophytin-a (bPheoa) and other breakdown products. These were also photodynamically active, and tumor response could be achieved over a wavelength range of 660 to 780 nm, while tumor cure was restricted to wavelengths of 755 (bPheoa) to 780 nm. A photosensitizing product absorbing at 660 nm was also present in isolated tumor cells. Photodynamic cell kill of tumor cells isolated from tumors after bChla accumulation in vivo, using 755 or 780 nm light vitro, was exponential up to 20–40 J cm−2. Above this light dose little or no further damage could be achieved, which is an indication of the rapid photobleaching of these sensitizers. In vivo, vascular occlusion occurred readily if light treatment was delivered shortly after sensitizer administration, but was delayed if light treatment was carried out 24 h after injection. Although up to 70% of tumor cells were lethally damaged after completion of in vivo light treatment, concurrent severe vascular destruction seemed necessary for tumor cure. Normal tissue photosensitivity totally subsided within 5 days after sensitizer administration. 相似文献
11.
Zhi Meng Bin Shan Ling Zhang Gui-Yan Han Ming-Hui Liu Ning-Yang Jia Zhen-Yuan Miao Wan-Nian Zhang Chun-Quan Sheng Jian-Zhong Yao 《中国化学快报》2016,27(5):623-626
Ten new water-soluble amino acid conjugates of pyropheophorbide-α ethers 4a-4j were synthesized and investigated for their in vitro photodynamic antitumor activity. The results showed that all compounds exhibited higher phototoxicity and lower dark toxicity against three kinds of tumor cell lines than BPD-MA. In particular, themost phototoxic compound 4d and 4j individually showed IC50 values of 41 nmol/L and 33 nmol/L against HCT116 cell, which represented 7.8- and 9.7-fold increase of antitumor potency compared to BPD-MA, respectively, suggesting that they were promising photosensitizers for PDT applications because of their strong absorption at long wavelength (λmax>650 nm), high phototoxicity, low dark cytotoxicity and good water-solubility. 相似文献
12.
Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) combine light and photosensitizers to treat cancers and microbial infections, respectively. In PACT, the excitation of a photosensitizer drug with appropriate light generates reactive oxygen species (ROS) that kill pathogens in the proximity of the drug. PACT has considerably advanced with new light sources, biocompatible photosensitizers, bioconjugate methods, and efficient ROS production. The PACT technology has evolved to compete with or replace antibiotics, reducing the burden of antibiotic resistance. This review updates recent advances in PACT, with special references to light sources, photosensitizers, and emerging applications to microbial infestations. We also discuss PACT applied to COVID-19 causing SARS-CoV-2 treatment and disinfecting food materials and water. Finally, we discuss the pathogen selectivity and efficiency of PACT. 相似文献
13.
Photodynamic therapy (PDT) is a developing modality for the treatment of certain tumorous and other diseases. Considerable progress has been made in recent years in the search for new photosensitizers, in particular elucidating the role of localization of the photosensitizer. Known successful photosensitizers of the tetrapyrrole type are amphiphilic molecules, preferably localizing in cellular membrane structures. Thus, the quest for new photosensitizers requires the synthesis of unsymmetrically substituted (amphiphilic) tetrapyrroles. In this article, we describe strategies for the de novo synthesis of amphiphilic tetrapyrroles using a 3-hydroxyphenyl substituted tetrapyrrolic system (Temoporfin) as the lead structure. From an applied science-oriented approach, such a set of amphiphilic porphyrins is best synthesized by combining well-developed condensation methods with subsequent functionalization via organolithium compounds or transition metal catalyzed coupling protocols. Starting from simple A2- or AB-porphyrins, the synthesis of A2B-, A3-, A3B-, and A2BC-porphyrins with a mixed hydrophilic/hydrophobic substitution pattern is described. Because of the versatility of this approach to unsymmetrically substituted porphyrins it is also applicable to other areas where porphyryns with a tailor-made substitution patterns are needed, for example, catalysts or molecular electronic devices based on tetrapyrroles. 相似文献
14.
Jinling Huang Naisheng Chen Jiandong Huang Ersheng Liu Jinping Xue Suling Yang Ziqiang HUANG Jiancheng Sun 《中国科学B辑(英文版)》2001,44(2):113-122
A series of sulfonated (S) phthalimidomethyl (P) zinc phthalocyanines (Pc) was synthesized in a reaction, in which both kinds
of substituents were introduced to ZnPc simultaneously. The products were separated by HPLC. The five different fractions
obtained were further purified by a membrane separation method, and then characterized by UV/Vis, IR, element analysis and
the abilities to generate singlet oxygen upon irradiation by light as well as a preliminary determination ofin vitro antitumor activities. The results show that one of the five separating parts with formula of ZnPcS2P2 exhibited rather good PDT activity. The compound was further characterized by NMR, MS and thermal analysis. Studies onin vivo antitumor activities of ZnPcS2P2 as photosensitizer show that its inhibitory rate was up to 89.8% and 90.8% for S180 and U14 solid tumors transplanted in mice respectively when the dosage of drug was 2 mg/kg and the dosage of laser light with 670
nm wavelength was 72 J/cm2. Several structural factors influenced on the PDT activities were discussed. 相似文献
15.
Dy JT Ogawa K Satake A Ishizumi A Kobuke Y 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(12):3491-3500
We have synthesized a novel, two-photon-absorbing photosensitizer for two-photon-absorption photodynamic therapy (2PA-PDT). The molecule is a butadiyne-bridged porphyrin dimer terminated with two water-soluble porphyrin monomers connected through Zn-imidazolyl self-assembly and covalently linked through olefin metathesis. It has an effective two-photon-absorption (2PA) cross-section value, sigma((2)), of 33 000+/-4600 GM with 5-ns pulses at 890 nm measured by using the open-aperture Z-scan technique. The compound was found to generate singlet oxygen, cytotoxic for tumor cells in photodynamic therapy (PDT), under 2PA conditions by conducting photobleaching experiments with anthracene-9,10-dipropionic acid sodium salt (ADPA). 相似文献
16.
Dragicevic-Curic N Gräfe S Albrecht V Fahr A 《Journal of photochemistry and photobiology. B, Biology》2008,91(1):41-50
Temoporfin (mTHPC) represents a very potent second-generation synthetic photosensitizer. It has shown to be effective in the photodynamic therapy of early or recurrent oral carcinomas, in the palliative treatment of refractory oral carcinomas and in the treatment of primary non-melanomatous tumours of the skin of the head and neck. Until now for all positive findings an intravenous application of the photosensitizer was mandatory. In the case of cutaneous malignant or non-malignant diseases a topical application of the drug onto the site of the disease followed by illumination, would be advantageous. Unfortunately, mTHPC is a highly hydrophobic drug with a low percutaneous absorption. The purpose of this experiment was to investigate the photodynamic efficacy of novel mTHPC-loaded invasomes after their topical application onto the skin of mice bearing the subcutaneously implanted human colorectal tumour HT29 followed by photoirradiation. Invasomes are vesicles containing in addition to phospholipids a mixture of terpenes (cineole, citral and d-limonene) or only one terpene (citral) and ethanol, as penetration enhancers. This was a pilot study since until now no data are available about the efficacy of mTHPC in the photodynamic therapy of HT29 tumours after its topical application. The aim of this experiment was to investigate whether a mTHPC-loaded invasome formulation can reduce tumour size by photodynamic therapy or at least to find a formulation slowing down tumour growth compared to the control group (mice without any treatment). The groups of mice treated with mTHPC–invasomes containing 1% of the terpene mixture prior to photoirradiation showed a significantly smaller (p < 0.05) tumour increase compared to control groups (mice without any treatment and mice only photoirradiated). 相似文献
17.
Albert Moussaron Philippe Arnoux Régis Vanderesse Estelle Sibille Patrick Chaimbault Céline Frochot 《Tetrahedron》2013
Several phthalocyanines with different peripheral substituents were prepared and characterized by MALDI-TOF, 1H NMR, UV–vis, fluorescence, and singlet oxygen quantum yields and retention time in HPLC normal phase. Zinc was used as a central metal ion to increase the photodynamic therapy efficiency. Phthalonitrile or 4-nitro phthalonitriles were used as starting materials. The influence of lipophilicity on the photophysical and photochemical properties was evaluated. 相似文献
18.
Limin Yang Peng Gao Yuanlei Huang Xiao Lu Qian Chang Wei Pan Na Li Bo Tang 《中国化学快报》2019,30(6):1293-1296
A nanophotosensitizer with outstanding mitochondrion-targeting ability was developed and the enhanced photodynamic therapy efficiency both in cancer cells and xenograft tumor models was successfully realized. 相似文献
19.
5-Aminolaevulinic acid-mediated photodynamic therapy in multidrug resistant leukemia cells 总被引:5,自引:0,他引:5
Li W Zhang WJ Ohnishi K Yamada I Ohno R Hashimoto K 《Journal of photochemistry and photobiology. B, Biology》2001,60(2-3):79-86
To verify if photodynamic therapy (PDT) could overcome multidrug resistance (MDR) when it it applied to eradicate minimal residual disease in patients with leukemia, we investigated the fluorescence kinetics of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) and the effect of subsequent photodynamic therapy on MDR leukemia cells, which express P-glycoprotein (P-gp), as well as on their parent cells. Evaluation of PpIX accumulation by flow cytometry showed that PpIX accumulated at higher levels in mdr-1 gene-transduced MDR cells (NB4/MDR) and at lower levels in doxorubicin-induced MDR cells (NOMO-1/ADR) than in their parent cells. A P-gp inhibitor could not increase PpIX accumulation. Measurement of extracellular PpIX concentration by fluorescence spectrometry showed that P-gp did not mediate the fluorescence kinetics of ALA-induced PpIX production. Assessment of ferrochelatase activity using high-performance liquid chromatography indicated that PpIX accumulation in drug-induced MDR cells was probably regulated by this enzyme. Assessment of phototoxicity of PDT using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that PDT was effective in NB4, NB4/MDR, NOMO-1 and NOMO-1/ADR cells, which accumulated high levels of PpIX, but not effective in K562 and K562/ADR cell lines, which accumulated relatively low levels of PpIX. These findings demonstrate that P-gp does not mediate the ALA-fluorescence kinetics, and multidrug resistant leukemia cells do not have cross-resistance to ALA-PDT. 相似文献
20.
Photodynamically induced oxygen depletion has been measured in an Ehrlich ascites mouse tumor cell line using a Clark-type electrode. Cells are loaded with aluminum phthalocyanines, sulfonated to different degrees (AlPcSn, n = 0,2,3,4) and consisting of various isomeric species. Different cell lines and incubation procedures are used in order to investigate the cellular uptake mechanism. Uptake (in units of molecules/cell), post-irradiation redistribution and AlPcSn photodegradation are measured using spectroscopic techniques. For a given sensitizer, the oxygen depletion rate per cell increases sublinearly with uptake and superlinearly with cell density. In order to compare oxygen depletion rates of different compounds, we have defined the biological quantum yield (BQY) as the number of oxygen molecules that disappear per absorbed photon. The BQY is independent of uptake and cell density; therefore, it denotes the intrinsic photoactivity of a sensitizer. Sensitizers with high BQY show efficient post-irradiation intracellular redistribution. Photodegradation during irradiation is similar for all sensitizers (20–30%). 相似文献