首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper reports the utilization of hybrid nanocomposite particles consisting of PEI25k-PEG5k copolymer grafted silica nanoparticles (SiO2NPs) for enhanced cellular uptake and siRNA delivery. High-resolution transmission electron microscopy and dynamic light scattering measurements ensured the average particle size of the final hybrid component as 45 nm (core SiO2, 28–30 nm and shell PEI25k-PEG5k, 12–15 nm). Surface morphology from atomic force microscopy analysis showed the significant relationship between the particle size and shape. 29Si and 13C cross-polarization–magic angle spinning solid state nuclear magnetic resonance (NMR), 1H-NMR, and Fourier transform infrared spectroscopy were used to obtain the relevant structural information (such as Q3, silanol; Q4, siloxane functional groups of SiO2NPs; resonance shifts and bending vibrations of PEI25k, –CH2–CH2–NH–; and PEG5k, –CH2–CH2–O–) from copolymer nanoparticle. Stable complexation of siRNA and nanocomposite particle (wt.%:wt.%) was achieved from 1:5 to 1:15 ratio. Nanocomposite particle (N/P) ratio and siRNA concentration determine the stability and knockdown efficiency of the PEI25k-PEG5k-graft-SiO2NPs–siRNA complexes. It was shown that highly positively charged (zeta potential, +66 mV) PEI25k-PEG5k-graft-SiO2NPs result in strong affinity with negatively charged siRNA. Confocal microscopy showed intensified cellular uptake of siRNA into cytoplasm of A549 cancer cell utilized for in vitro study. In conclusion, the coherence, graft density of copolymer-SiO2NPs, and siRNA concentration were found to strongly influence the stability, and hence determine the knockdown efficiency, of PEI25k-PEG5k-graft-SiO2NPs–siRNA complexes.  相似文献   

2.
The core–shell nanoparticles possessing poly(methyl methacrylate) (PMMA) core coated with chitosan (CS), polyethyleneimine (PEI), and chitosan-mixed-polyethyleneimine (CS/PEI) shells were synthesized in this work. The emulsifier-free emulsion polymerization triggered by a redox initiating system from t-butylhydroperoxide (TBHP) and amine groups on CS and/or PEI was used as a synthetic method. In the CS/PEI systems, the amount of CS was kept constant (0.5 g), while the amount of PEI was varied from 0.1 to 0.5 g. The surface and physico-chemical properties of prepared nanoparticles were then examined. FTIR spectra indicated the presence of grafted PMMA on CS and/or PEI, and the weight fraction of incorporated PEI in the CS/PEI nanoparticles. All nanoparticles were spherical in shape with uniform size distribution illustrated by scanning electron microscopy (SEM). The introduction of PEI to CS nanoparticles yielded the higher monomer conversion, grafting efficiency, and grafting percentage compared with the CS nanoparticles. The size of CS/PEI nanoparticles was smaller than the original CS and PEI nanoparticles, and tended to decrease with increasing amount of PEI introduced. The introduction of PEI also brought the higher colloidal stability to the nanoparticles as indicated by zeta-potential measurement and isoelectric point analysis. The nanoparticles exhibited a promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The nanoparticle–bacteria interaction was studied via SEM. The results suggested that they would be useful as effective antibacterial agents.  相似文献   

3.
Comparison of the fluorescence intensity caused by the accumulation of PpIX in endometrial cancer xenografts in nude mice after low‐dose 5‐Aminolevulinic acid (ALA) injection combined with siRNA transfection was mediated by ultrasound microbubbles and polyethyleneimine (PEI) to explore the feasibility of the ultrasound microbubble technique as transfection agents. Knockdown of ferrochelatase (FECH) in human endometrial cancer xenografts in nude mice was performed by transfection with FECH‐siRNA mediated by PEI and ultrasound microbubbles alone or in combination; then, low‐dose ALA was injected. Subsequently, an in vivo animal imaging system was employed to detect the fluorescence intensity in xenografts. Red fluorescence was observed in xenografts given more than 6.25 mg kg?1 of ALA. When the dose of ALA was greater than 50 mg kg?1, there was a significant difference in the fluorescence between tumor and other tissues. After the nude mice were transfected with siRNA and treated with low‐dose ALA (1.0 mg kg?1), apparent PpIX fluorescence of the xenografts was observed, and the fluorescence intensity was PEI+ ultrasound microbubbles > PEI > ultrasound microbubbles. Ultrasound microbubbles in combination with PEI could generate a higher fluorescence intensity of PpIX than that obtained with ultrasound microbubbles or PEI alone, and ultrasound microbubbles could wholly or partially replace PEI under certain conditions.  相似文献   

4.
The drug delivery properties of a series of poly(lactic acid)–poly(ethylene glycol) (PLA–PEG) micellar-like nanoparticles have been assessed in terms of their colloidal stability and their ability to incorporate a water soluble drug. These studies have focused on a range of PLA–PEG copolymers with a fixed PEG block (5 kDa) and a varying PLA segment (3–110 kDa). In aqueous media, these copolymers formed micellar-like assemblies following precipitation from water miscible solvents. There was a controlled increase in the particle size as the molecular weight of the PLA block was increased. The characteristics of the PEG corona were also highly dependent on the PLA moiety. Copolymers with a low molecular weight PLA block (3–15 kDa) formed highly colloidally stable dispersions, with a complete PEG surface coverage. However, increasing the molecular weight of the PLA block resulted in significantly less colloidally stable nanoparticle dispersions, which flocculated in solvents that were significantly better than θ-solvents for the stabilising PEG chains. This can be attributed to a reduced PEG surface coverage and the probable presence of naked PLA ‘patches’ on the particle surface. These larger PLA–PEG nanoparticles (30:5–110:5) were found to be stabilised in the presence of serum components, which are thought to adsorb into the gaps on the particle surface and prevent flocculation. All of the dispersions were found to be stable under physiological conditions and therefore suitable for in vivo administration. A reasonable loading (3.1% w/w) of the micellar-like PLA–PEG 30:5 nanoparticles with the water soluble drug procaine hydrochloride was achieved. The incorporated drug was found to have no effect on the nanoparticle structure or recovery, which can be attributed to the micellar character of these assemblies and the presence of the stabilising PEG chains.  相似文献   

5.
Multifunctional, biocompatible, and brush‐grafted poly(ethylene glycol)/poly(ε‐caprolactone) (PEG/PCL) nanoparticles have been synthesized, characterized, and used as vehicles for transporting hydrophobic substances in water. For anchoring the polymer mixed brushes, we used magnetic‐silica particles of 40 nm diameter produced by the reverse microemulsion method. The surface of the silica particle was functionalized with biocompatible polymer brushes, which were synthesized by the combination of “grafting to” and “grafting from” techniques. PEG was immobilized on the particles surface, by “grafting to,” whereas PCL was growth by ROP using the “grafting from” approach. By varying the synthetic conditions, it was possible to control the amount of PCL anchored on the surface of the nanoparticles and consequently the PEG/PCL ratio, which is a vital parameter connected with the arrangement of the polymer brushes as well as the hydrophobic/hydrophilic balance of the particles. Thus, adjusting the PEG/PCL ratio, it was possible to obtain a system formed by PEG and PCL chains grafted on the particle's surface that collapsed in segregated domains depending on the solvent used. For instance, the nanoparticles are colloidally stable in water due to the PEG domains and at the same time are able to transport, entrapped within the PCL portion, highly water‐insoluble drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2966–2975  相似文献   

6.
The blend membranes of polystyrene-block-polyisoprene-block-polystyrene and polyethylene-block-poly(ethylene glycol)-block-polycaprolactone were designed using the phase inversion technique. The poly(methyl methacrylate)-coated gold nanoparticles are around 40–50 nm in size. The honeycomb-shaped nanopores were uniformly dispersed in polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone/poly(methyl methacrylate)-coated gold nanoparticles blend membranes. There was a 16% increase in tensile strength and a 33% increase in tensile modulus of polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone/poly(methyl methacrylate)-coated gold nanoparticles 1 relative to the neat membrane. With 1 wt% nanoparticles, the membrane showed a higher water flux of 59.2 mL cm?2 min?1 and a salt rejection ratio of 25.4%, while the polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone membrane without poly(methyl methacrylate)-coated gold nanoparticles had lower flux (43.8 mL cm?2 min?1) and salt rejection (18.5%).  相似文献   

7.
Symmetric reduction‐responsive amphiphilic comblike copolymers mid‐disulfide‐functionalized comblike copolymers with alternating copolymer comprised of styrenic unit and N‐(2‐hydroxyethyl) maleimide (HEMI) unit (poly(St‐alt‐HEMI)) backbones and alternating PEG and PCL side chains (S‐CP(PEG‐alt‐PCL)) with poly(St‐alt‐HEMI) backbones and alternating poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) side chains were synthesized and used as nanocarriers for in vitro release of doxorubicin. The target copolymers with predetermined molecular weight and narrow molecular weight distribution (Mw/Mn = 1.15–1.20) were synthesized by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of vinylbenzyl‐terminated PEG and N‐(2‐hydroxyethyl) maleimide mediated by a disulfide‐functionalized RAFT agent S‐CPDB, and followed by ring‐opening polymerization of ε‐caprolactone. When compared with linear block copolymer comprised of poly(ethylene glycol) (PEG) and poly(?‐caprolactone) (PCL) segments (PEG‐b‐PCL) copolymers, comblike copolymers with similar PCL contents usually exhibited decreased crystallization temperature, melting temperature, and degree of crystallinity, indicating the significant influence of copolymer architecture on physicochemical properties. Dynamic light scattering measurements revealed that comblike copolymers were liable to self‐assemble into aggregates involving vesicles and micelles with average diameter in the range of 56–226 nm and particle size distribution ranging between 0.07 and 0.20. In contrast to linear copolymer aggregates, comblike copolymer aggregates with similar compositions were of improved storage stability and enhanced drug‐loading efficiency. In vitro drug release confirmed the disulfide‐linked comblike copolymer aggregates could rapidly release the encapsulated drug when triggered by 10 mM DL ‐dithiothreitol. These reduction‐sensitive, biocompatible, and biodegradable aggregates have a potential as controlled delivery vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
In this study, synthesis and characterization of magnetic nanocarriers are reported for drug delivery based on the amphiphilic di‐block and tri‐block copolymers of poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) with surface modified super‐paramagnetite Fe3O4 nanoparticles (magnetic nanoparticles (MNPs)). The synthesized block copolymers (methoxy poly(ethylene glycol) (mPEG)–PCL and PCL–PEG–PCL) were characterized by Fourier transform infrared (FT‐IR), 1H nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC), and their properties such as critical micelle concentration, hydrophilicity to lipophilicity balance, and hydrolytic degradation were investigated. The block copolymers were functionalized with terminal azide groups (mPEG–PCL(N3) and (N3)PCL–PEG–PCL(N3)), and magnetic Fe3O4 nanoparticles were surface modified with poly(acrylic acid) (PAA) and propargyl alcohol (MNP–PAA–C≡CH). Magnetic nanocarriers were synthesized by click reaction between azide‐terminated block copolymers and MNP–PAA–C≡CH and characterized by FT‐IR, thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM), and cytotoxicity was investigated by methyl thiazolyl tetrazolium assay. In vitro drug loading and release and release kinetics were investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The purpose of this investigation was to design novel pentablock copolymers (polylactide–polycaprolactone–polyethylene glycol–polycaprolactone–polylactide) (PLA–PCL–PEG–PCL–PLA) to prepare nanoparticle formulations which provide continuous delivery of steroids over a longer duration with minimal burst effect. Another purpose was to evaluate the effect of poly(l-lactide) (PLLA) and poly(d,l-lactide) (PDLLA) incorporation on crystallinity of pentablock copolymers and in vitro release profile of triamcinolone acetonide (selected as model drug) from nanoparticles. PLA–PCL–PEG–PCL–PLA copolymers with different block ratio of PCL/PLA segment were synthesized. Release of triamcinolone acetonide from nanoparticles was significantly affected by crystallinity of the copolymers. Burst release of triamcinolone acetonide from nanoparticles was significantly minimized with incorporation of proper ratio of PDLLA in the existing triblock (PCL–PEG–PCL) copolymer. Moreover, pentablock copolymer-based nanoparticles exhibited continuous release of triamcinolone acetonide. Pentablock copolymer-based nanoparticles can be utilized to achieve continuous near–zero-order delivery of corticosteroids from nanoparticles without any burst effect.  相似文献   

10.
Thermosetting blends of a biodegradable poly(ethylene glycol)‐type epoxy resin (PEG‐ER) and poly(?‐caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass‐transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG‐ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG‐ER blends, that is, a PCL‐rich phase and a PEG‐ER crosslinked phase composed of an MAH‐cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase‐separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG‐ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2833–2843, 2004  相似文献   

11.
Two novel polymers of low molecular weight polyethylenimine cross-linked by (2-hydroxypropyl)-beta-cyclodextrin or (2-hydroxypropyl)-gamma-cyclodextrin showed lower cytotoxicity and higher transfection efficiency for the delivery of plasmid DNA compared with those of polyethylenimine (PEI, 25 kDa).  相似文献   

12.
Polymeric nanoparticles gain enormous interests in cancer therapy. Polyethylenimine (PEI) 25 kD is well known for its high transfection efficiency and cytotoxicity. PEI‐CyD (PC) was previously synthesized by conjugating low molecular PEI (M w 600) with β‐cyclodextrin (β‐CyD), which is shown to induce lower cytotoxicity than PEI 25 kD. In the current study, the in vivo immune response of branched PEI 25 kD and PC is investigated. Compared to PC/pDNA, exposure of PEI 25kD/pDNA induces higher level of immune‐stimulation evidenced by the increased spleen weight, phagocytic capacity of peritoneal macrophage, and proinflammatory cytokines in serum and liver. Importantly, administration of PEI 25 kD can greatly promote breast cancer metastasis in liver and lung tissues, which correlates with its ability to induce high oxidative stress and NLRP3‐inflammasome activation. These results suggest that polymeric nanocarriers have the potential to induce immune‐stimulation and cancer metastasis, which may affect their efficiency for cancer therapy.  相似文献   

13.
Polyethylenimines (PEIs) are outstanding macromolecules belonging to the polycations used in gene transfection. The transfection efficiency and cytotoxicity of PEIs increase with the increase in their molecular weight. To break up the correlation between transfection efficiency and cytotoxicity for non‐viral gene delivery, disulfide cross‐linked polyethylenimine (PEI‐SS) has been widely employed as highly efficient gene vectors for DNA/siRNA delivery in numerous efforts. In this work, PEI‐SS is described as a non‐viral vector for miRNA delivery for the first time. PEI‐SS is synthesized via cross‐linking using disulfide bonds as the cross‐linker from low molecular weight PEI. PEI‐SS can efficiently bind anti‐miR‐155 to form the polyplex with nano‐sized spherical structures in the size range of 10–100 nm. The polyplex is degraded by glutathione (GSH, a reducing agent) in cancer cells. Anti‐miR‐155 is then released to efficiently inhibit tumor growth.  相似文献   

14.
Even though the blood–brain barrier (BBB) is compromised for angiogenesis, therapeutic agents for glioblastoma multiforme (GBM) are particularly inefficient due to the existence of a blood–tumor barrier (BTB), which hampers tumor accumulation and uptake. Integrin αvβ3 is overexpressed on glioblastoma U87 cells and neovasculture, thus making its ligands such as the RGD motif target glioblastoma in vitro and in vivo. In the present work, we have designed a modified polyethylene glycol–polyethylenimine (PEG–PEI) gene carrier by conjugating it with a cyclic RGD sequence, c(RGDyK) (cyclic arginine‐glycine‐aspartic acid‐D ‐tyrosine‐lysine). When complexed with plasmid DNA, this gene carrier, termed RGD–PEG–PEI, formed homogenous nanoparticles with a mean diameter of 73 nm. These nanoparticles had a high binding affinity with U87 cells and facilitated targeted gene delivery against intracranial glioblastoma in vivo, thereby leading to a higher gene transfer efficiency compared to the PEG–PEI gene carrier without RGD decoration. This intracranial glioblastoma‐targeted gene carrier also enhanced the therapeutic efficacy of pORF‐hTRAIL, as evidenced by a significantly prolonged survival of intracranial glioblastoma‐bearing nude mice. Considering the contribution of glioblastoma neovasculature to the BBB under angiogenic conditions, our results demonstrated the therapeutic feasibility of treating a brain tumor through mediation of integrin αvβ3, as well as the potential of using RGD–PEG–PEI as a targeted gene carrier in the treatment of intracranial glioblastoma.  相似文献   

15.
H‐shaped quintopolymer containing different five blocks: poly(ε‐caprolactone) (PCL), polystyrene (PS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) as side chains and poly(tert‐butyl acrylate) (PtBA) as a main chain was simply prepared from a click reaction between azide end‐functionalized PCL‐PS‐PtBA 3‐miktoarm star terpolymer and PEG–PMMA‐block copolymer with alkyne at the junction point, using Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as a catalyst in DMF at room temperature for 20 h. The H‐shaped quintopolymer was obtained with a number–average molecular weight (Mn) around 32,000 and low polydispersity index (Mw/Mn) 1.20 as determined by GPC analysis in THF using PS standards. The click reaction efficiency was calculated to have 60% from 1H NMR spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4459–4468, 2008  相似文献   

16.
Monomethoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone)(MPEG‐b‐PCL) diblock copolymers were synthesized via a ring‐opening polymerization. The polymeric nanoparticles prepared by precipitation/solvent evaporation exhibit a core–shell structure, characterized by dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). The hydrolytic degradation of those nanoparticles was studied by DLS, NMR, and gel permeation chromatography (GPC). It was found that the molecular weight of PCL block in a copolymer significantly affects the stability of nanoparticles in aqueous solution and nanoparticles with shorter PCL block length degraded faster. The degradation behaviors could be divided into two stages with slow degradation at the interface region via swelling effect and fast degradation at inner core via caves and channels formed by cleavage of ester bonds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The lower critical solution temperatures (LCSTs) for mass fractionated samples of poly(N‐isopropylacrylamide) (PNIPAM) were studied to determine the effect of polymer molecular weight on the LCST using a high throughput temperature gradient apparatus. PNIPAM fractions prepared by a conventional radical polymerization using azoisobutyronitrile (AIBN) as the initiator had LCSTs that were largely invariant with molecular weight or dispersity. Only slight deviations were noted with lower molecular weight samples. An 18‐kDa sample had a 0.6 °C higher LCST. A 56‐kDa sample had a 0.2 °C higher LCST. PNIPAM derivatives prepared with a triphenylmethyl (trityl) functionalized azo initiator were also prepared and mass fractionated. These samples' LCSTs were identical to those of PNIPAM samples prepared using AIBN initiation when higher molecular weight samples were compared. The trityl‐containing PNIPAM fractions' LCSTs varied when the molecular weight decreased below 100 kDa. Acidolysis of the trityl end groups provided a third set of PNIPAM derivatives whose LCST differed only with samples with Mw values < 60 kDa. These results show there is no effect of molecular weight on LCST until the degree of polymerization is such that end group structure becomes significant. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1492–1501, 2006  相似文献   

18.
Core-shell type multiarm star copolymers with poly(ε-caprolactone) (PCL) as shells and hyperbranched polyethylenimine (PEI) as core have been successfully prepared by the Sn(Oct)2 catalyzed ring-opening polymerization of ε-caprolactone (CL) using high molecular weigh PEIs directly as macroinitiators. The initiation efficiency is in the range of 91-95% for PEI with Mn = 104 (PEI10K) and only around 60% for PEI with Mn = 2.5 × 104 (PEI25K), leading to star polymers with an average arm number in the range of 155-276. The thermal property of the obtained multiarm star polymers were also investigated by DSC. The melting and crystallization temperatures of the star polymers increase as the PCL arm length increases when the PEI core is fixed. The fusion enthalpy, crystalline enthalpy and degree of crystallinity values of the star polymers with PEI10K core are less than those with PEI1.8K core. Due to the polarity difference between PCL arm and PEI core, the resulting multiarm star polymers can act as inverted micellar nanocapsules capable of extracting and encapsulating water soluble guests. Increasing the size and polarity of the hydrophilic PEI core of the star nanocapsules are two effective ways to enhance their hydrophilic guest encapsulation capacity. Increasing the hydrophobic PCL arm length can increase the molar ratio, whereas reduce the weight ratio of the encapsulated hydrophilic guests to the star nanocapsules. Unexpectedly, the obtained nanocapsules can entrap the bigger size hydrophilic congo red guests more than the smaller size methyl orange.  相似文献   

19.
The star-shaped amphiphilic block copolymer (DPEA-PCL-PEG) was prepared through ring opening polymerization of ε-caprolactone (CL) initiated by hydroxyl end-capped dendritic poly(ether-amide) (DPEA-OH), then coupling with monomethoxy-terminated poly(ethylene-glycol) (PEG) via an esterification process. The molecular structure was verified by FT-IR, 1H NMR and gel permeation chromatography (GPC). The number average molecular weight of the PCL arm was calculated to be about 1910 g mol−1 by 1H NMR analysis. The number average molecular weight of the copolymer was determined to be 74,020 with the molecular weight distribution of 1.15 by GPC. The DSC and X-ray diffraction analysis indicated that the copolymer possesses double melting and crystallization peaks, attributed to PCL and PEG segments in DPEA-PCL-PEG. The corresponding melting and crystallization temperature, and value of crystallinity are much lower than that of their individual homopolymers. The copolymer easily formed the core-shell structural nanoparticles as micelles in water with a lower critical micelle concentration of 5.524 mg l−1.  相似文献   

20.
Free radical crosslinking copolymerization of styrene and ethylene glycol dimethacrylate (nST/nEGDM in feed = 5/5) has been investigated in toluene. Variation of the reaction conditions allows the formation of macromolecules with low molecular weight (21.6 kDa and 12 nm in diameter), perfectly soluble branched particles in the early stage of the polymerization. Elongation of the reaction time leads to the formation of soluble/swelling microgels with medium molecular weight (156 kDa and 41–120 nm) and, finally, swelling/particularly soluble colloidal polymer particles with very high molecular weight (3.6 MDa and 59–324 nm). Conversion, molecular weight [by gel permeation chromatography (GPC)], ratio of pendant vinyl groups [by nuclear magnetic resonance (NMR)], size of nanoparticles in swollen [by dynamic light scattering (DLS)] and dried state [by transmission electron microscopy (TEM)], morphology [by scanning electron microscopy (SEM)], and nanolayer film formation (by SEM) were measured. The role of reaction conditions in producing different polymer structures and morphologies was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号