首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MXenes are a class of two‐dimensional (2D) transition metal carbides, nitrides and carbonitrides that have shown promise for high‐rate pseudocapacitive energy storage. However, the effects that irreversible oxidation have on the surface chemistry and electrochemical properties of MXenes are still not understood. Here we report on a controlled anodic oxidation method which improves the rate performance of titanium carbide MXene (Ti3C2Tx, Tx refers to ‐F, =O, ‐Cl and ‐OH) electrodes in acidic electrolytes. The capacitance retention at 2000 mV s?1 (with respect to the lowest scan rate of 5 mV s?1) increases gradually from 38 % to 66 % by tuning the degree of anodic oxidation. At the same time, a loss in the redox behavior of Ti3C2Tx is evident at high anodic potentials after oxidation. Several analysis methods are employed to reveal changes in the structure and surface chemistry while simultaneously introducing defects, without compromising electrochemically active sites, are key factors for improving the rate performance of Ti3C2Tx. This study demonstrates improvement of the electrochemical performance of MXene electrodes by performing a controlled anodic oxidation.  相似文献   

2.
采用水热法制备了0D/2D复合Ti3C2Tx MXene,利用X射线衍射、动态光散射和荧光光谱表征了其结构与形貌,结果表明形成了量子点吸附于纳米片的Ti3C2Tx复合结构(QDT)。相比未引入量子点的Ti3C2Tx,由QDT组装得到的自支撑膜电极的电化学性能有了显著提高:在三电极体系中,扫速为5 mV·s-1时,比电容为338 F·g-1,当扫速达到2 000 mV·s-1,电容保持率达到46%;在两电极体系中,0.5 A·g-1时的比电容达到216 F·g-1,10 000次循环后电容保持率为87%。以上性能可归结于:量子点提供了更多的离子吸附位点,且纳米片尺寸减小,缩短了离子传输路径。  相似文献   

3.
《中国化学快报》2023,34(4):107426
In this work, Ti3C2Tx MXene with -F, -Cl and -Br surface terminations are synthesized and the effect of these halogen terminations on the lithium storage properties is investigated. A maximum Li+ storage capacity of 189 mAh/g is achieved with Ti3C2Brx MXene much higher than Ti3C2Clx and Ti3C2Fx with 138 mAh/g and 123 mAh/g, respectively. Density functional theory (DFT) calculation shows that the adsorption formation energy of halogen atoms on Ti atoms follows the trend of Ti-F > Ti-Cl > Ti-Br, leading to the same trend in the content of terminations on corresponding MXenes. In addition, inevitable exposure of MXene to oxygen causes competition between halogen and oxygen. Theoretical results show Ti3C2Brx MXene has the highest Ti to O ratio and the lowest Ti to Br ratio, the high lithium affinity of O explains the maximum Li-ion storage capacity with Ti3C2Brx MXene. This work shed light on the opportunity for achieving improved lithium storage properties of MXene electrodes by regulating the surface chemistry.  相似文献   

4.
Mo- and Fe-containing enzymes catalyze the reduction of nitrate and nitrite ions in nature. Inspired by this activity, we study here the nitrate reduction reaction (NO3RR) catalyzed by an Fe-substituted two-dimensional molybdenum carbide of the MXene family, viz., Mo2CTx : Fe (Tx are oxo, hydroxy and fluoro surface termination groups). Mo2CTx : Fe contains isolated Fe sites in Mo positions of the host MXene (Mo2CTx) and features a Faradaic efficiency (FE) and an NH3 yield rate of 41 % and 3.2 μmol h−1 mg−1, respectively, for the reduction of NO3 to NH4+ in acidic media and 70 % and 12.9 μmol h−1 mg−1 in neutral media. Regardless of the media, Mo2CTx : Fe outperforms monometallic Mo2CTx owing to a more facile reductive defunctionalization of Tx groups, as evidenced by in situ X-ray absorption spectroscopy (Mo K-edge). After surface reduction, a Tx vacancy site binds a nitrate ion that subsequently fills the vacancy site with O* via oxygen transfer. Density function theory calculations provide further evidence that Fe sites promote the formation of surface O vacancies, which are identified as active sites and that function in NO3RR in close analogy to the prevailing mechanism of the natural Mo-based nitrate reductase enzymes.  相似文献   

5.
A facile hybrid assembly between Ti3C2Tx MXene nanosheets and (3‐aminopropyl) triethoxylsilane‐modified Si nanoparticles (NH2?Si NPs) was developed to construct multilayer stacking of Ti3C2Tx nanosheets with NH2?Si NPs assembling together (NH2?Si/Ti3C2Tx). NH2?Si/Ti3C2Tx exhibits a significantly enhanced lithium storage performance compared to pristine Si, which is attributed to the robust crosslinking architecture and considerably improved electrical conductivity as well as shorter Li+ diffusion pathways. The optimized NH2?Si/Ti3C2Tx anode with Ti3C2Tx: NH2?Si mass ratio of 4 : 1 displays an enhanced capacity (864 mAh g?1 at 0.1 C) with robust capacity retention, which is significantly higher than those of NH2?Si NPs and Ti3C2Tx anodes. Furthermore, this work demonstrates the important effect of the MXene‐based electrode architecture on the electrochemical performance and can guide future work on designing high‐performance Si/MXene hybrids for energy storage applications.  相似文献   

6.
The optimization of three-dimensional (3D) MXene-based electrodes with desired electrochemical performances is highly demanded. Here, a precursor-guided strategy is reported for fabricating the 3D SnS/MXene architecture with tiny SnS nanocrystals (≈5 nm in size) covalently decorated on the wrinkled Ti3C2Tx nanosheets through Ti−S bonds (denoted as SnS/Ti3C2Tx-O). The formation of Ti−S bonds between SnS and Ti3C2Tx was confirmed by extended X-ray absorption fine structure (EXAFS). Rather than bulky SnS plates decorated on Ti3C2Tx (SnS/Ti3C2Tx-H) by one-step hydrothermal sulfidation followed by post annealing, this SnS/Ti3C2Tx-O presents size-dependent structural and dynamic properties. The as-formed 3D hierarchical structure can provide short ion-diffusion pathways and electron transport distances because of the more accessible surface sites. In addition, benefiting from the tiny SnS nanocrystals that can effectively improve Na+ diffusion and suppress structural variation upon charge/discharge processes, the as-obtained SnS/Ti3C2Tx-O can generate pseudocapacitance-dominated storage behavior enabled by engineered surface reactions. As predicted, this electrode exhibits an enhanced Na storage capacity of 565 mAh g−1 at 0.1 A g−1 after 75 cycles, outperforming SnS/Ti3C2Tx-H (336 mAh g−1), SnS (212 mAh g−1), and Ti3C2Tx (104 mAh g−1) electrodes.  相似文献   

7.
This study reports first synthesis of MXene-derived co-existing magnetic phases. New family of two-dimensional (2D) materials such as Ti3C2 namely MXene, having transition metal forming hexagonal structure with carbon atoms have attracted tremendous interest now a days. We have reported structural, optical and magnetic properties of un-doped and La-doped Ti3C2Tx MXene, synthesized using co-precipitation method. The lattice parameter (LP) calculated for La-MXene are a = 5.36 Å, c = 18.3 Å which are slightly different from the parent un-doped MXene (a = 5.35 Å, c = 19.2 Å), calculated from X-ray diffraction data. The doping of La+3 ions shrinks Ti3C2Tx layers perpendicular to the planes. The band gap for MXene is calculated to be 1.06 eV which is increased to 1.44 eV after doping of La+3 ion that shows its good semiconducting nature. The experimental results and density functional theory (DFT) calculations for magnetic properties of both the samples have been presented and discussed, indicating the co-existence of ferromagnetic-antiferromagnetic phases. The results presented here are novel and is first report on co-existence of magnetic properties of 2D carbides for potential applications in two-dimensional spintronics.  相似文献   

8.
《中国化学快报》2020,31(9):2305-2308
MXene materials have recently attracted considerable attention in energy storage application owing to their metallic conductivity, 2D structure and tunable surface terminations. However, the restacking of 2D MXene nanosheets hinders the ion transport and accessibility to the surface, resulting in adverse effect on their electrochemical performances. Here, with the assistance of hexamethylenetetramine (C6H12N4), 2D Ti3C2Tx MXene nanosheets were fabricated into a 3D architecture with crumbled and porous structure through an electrostatic self-assembly followed by annealing. The resultant 3D structure can expose massive active sites and facilitates the ion transport, which is beneficial for sufficient utilization of the outstanding superiorities of the MXene. Therefore, as a pseudocapacitive material, the 3D crumpled and porous Ti3C2Tx MXene shows a gravimetric capacitance of 333 F/g at 1 A/g, and maintains 261 F/g and 132 F/g at ultrahigh current densities of 100 A/g and 1000 A/g, respectively, revealing promising potential for application in supercapacitors.  相似文献   

9.
MXenes, a new family of two-dimensional (2D) materials, have received extensive interest due to their fascinating physicochemical properties, such as outstanding light-to-heat conversion efficiency. However, the photothermal conversion mechanism of MXenes is still poorly understood. Here, by using femtosecond visible and mid-infrared transient absorption spectroscopy, the electronic energy dissipation dynamics of MXene (Ti3C2Tx) nanosheets dispersed in various solvents are carefully studied. Our results indicate that the lifetime of photoexcited MXene is strongly dependent on the surrounding environment. Especially, the interfacial electron-vibration coupling between the MXene nanosheets and the adjacent solvent molecules is directly observed following the ultrafast photoexcitation of MXene. It suggests that the interfacial interactions at the MXene-solvent interface play a critical role in the ultrafast energy transport dynamics of MXene, which offers a potentially feasible route for tailoring the light conversion properties of 2D systems.  相似文献   

10.
Titanium carbide (Ti3C2Tx) MXene possesses various unique physicochemical and catalytic properties. However, the electrochemical CO oxidation performance is not yet addressed experimentally. Herein, Ti3C2Tx (TX=OH, O, and F) ordered and exfoliated two-dimensional nanosheets ornamented with semi-spherical palladium nanoparticles (2.5 Wt. %) with an average diameter of (10±1 nm) (denoted as Pd/Ti3C2Tx) is rationally designed for the electrochemical CO oxidation. The fabrication process is based on the selective chemical etching of Ti3AlC2 and delamination under sonication to form Ti3C2Tx nanosheets that are used as a substrate and reducing agent for supporting in situ growth of Pd nanoparticles via impregnation with Pd salt. Interestingly, Pd-free Ti3C2Tx displayed inferior CO oxidation activity, while Pd/Ti3C2Tx enhanced the CO oxidation activity substantially. This is attributed to the combination of outstanding physicochemical properties of Ti3C2Tx and the catalytic merits of Pd nanoparticles.  相似文献   

11.
In this work, we studied the formation of the rutile phase of titanium dioxide (TiO2) on delaminated MXene (d‐Ti3C2Tx) flakes by the reaction of Ti3C2Tx with amino acids in water. Three types of amino acids with varied side‐chain polarity were used to delaminate Ti3C2Tx. d‐Ti3C2Tx flakes formed stable colloidal solutions due to the negative surface charges of chemisorbed amino acids on the d‐Ti3C2Tx. Rutile formed on d‐Ti3C2Tx at room temperature upon the intercalation of aromatic amino acids and subsequent sonication of the solution, while flakes intercalated with aliphatic amino acids did not oxidize. X‐Ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy revealed the nanosize rutile formation on the surface of Ti3C2Tx flakes. The XPS results indicated the surface functionalization of histidine on d‐Ti3C2Tx flakes. As‐synthesized histidine functionalized rutile TiO2@d‐Ti3C2Tx hybrid was used for adsorption of Cu2+ ions from aqueous solution with a maximum uptake of 95 mg g?1.  相似文献   

12.
The emerging novel class of two-dimensional materials – MХenes – have attracted significant research attention. However, there are only few reports on using the most prominent member of the MXene family, Ti3C2Tx, as an active material for memristive devices within a polyelectrolyte matrix and its deposition on inert electrodes like ITO and Pt. In this study, we systematically investigate Ti3C2Tx MXenes synthesized with two classical delamination agents, such as lithium chloride and tetramethylammonium hydroxide, to identify the most suitable candidate for memristive device applications. The characteristics of memristors based on the hybrid structures consisting of MXene−polyelectrolyte multilayers, specifically polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS) are explored. The PEI(MXene)/PSS memristor exhibits a voltage threshold (VSET/RESET) range of 1.5–2.0 V, enabling the transition from a high-resistive state (HRS) to a low-resistive state (LRS), along with a significant current switching ratio of approximately two orders of magnitude. The observed VSET/RESET difference of approximately 4 V is further supported by density functional theory (DFT) calculated redox potential. These findings underscore the potential of polyelectrolyte-based memristors, such as the in PEI−Ti3C2Tx−PSS system, in facilitating the development of highly functional, self-assembled memristive devices with diverse applications.  相似文献   

13.
Nowadays, two‐dimensional materials have many applications in materials science. As a novel two‐dimensional layered material, MXene possesses distinct structural, electronic, and chemical properties; thus, it has potential applications in many fields, including battery electrodes, energy storage materials, sensors, and catalysts. Up to now, more than 70 MAX phases have been reported. However, in contrast to the variety of MAX phases, the existing MXene family merely includes Ti2C, Ti3C2, (Ti1/2, Nb1/2)2C, (V1/2, Cr1/2)3C2, Nb2C, Ti3CN, Ta4C3, V2C, and Nb4C3. Among these materials, the Ti3C2Tx MXene exhibits prominently high volumetric capacitance, and the rate at which it transports electron is suitable for electrode materials in batteries and supercapacitors. Hence, Ti3C2Tx is commonly utilized as an electrode material in ion batteries such as Li+, Na+, K+, Mg2+, Ca2+, and Al3+ batteries. What is more, Ti2C has the biggest specific surface area among all of these potential MXene phases, and therefore, Ti2C has remarkably high gravimetric hydrogen storage capacities. In addition, Ti2CO2 materials display extremely high activity for CO oxidation, which makes it possible to design catalysts for CO oxidation at low temperatures. Furthermore, Ti3C2Tx with O, OH, and/or F terminations can be used for water purification owing to excellent water permeance, favorable filtration ability, and long‐time operation ability. This review supplies a relatively comprehensive summary of various applications of MXenes over the past few years.  相似文献   

14.
《中国化学快报》2020,31(4):1039-1043
Ti3C2Tx, a most studied member of MXene family, shows promise as a candidate electrode for pseudocapacitor due to its electronic conductivity and hydrophilic surface. However, the unsatisfactory yield of Ti3C2Tx few-layer flakes significantly restricted it in real applications. Here, we proposed a simple solution to boost the yield of Ti3C2Tx few-layer flakes by decreasing precursor size. When using the small 500 mesh Ti3AlC2 powders as raw material, high yield of 65% was successfully achieved. Moreover, the as-received small flakes also exhibit an enhanced pseudocapacior performance owing to their excellent electrical conductivity, expanded interlayer space and more O content on the surface. This work not only sheds light on the cost effective mass production of Ti3C2Tx few-layer flakes, but also provides an efficient solution for the design of MXene electrodes with high pseudocapacior performance.  相似文献   

15.
《中国化学快报》2023,34(1):107152
Application of Li-oxygen (Li-O2) battery is in urgent need of bifunctional ORR/OER electrocatalyst. A surface-functionalization CoP/Ti3C2Tx composite was fabricated theoretically, with the optimized electronic structure and more active electron, which is beneficial to the electrochemical reaction. The accordion shaped Ti3C2Tx is featured with large specific surface area and outstanding electronic conductivity, which is beneficial for the adequate exposure of active sites and the deposition of Li2O2. Transition metal phosphides provide more electrocatalytic active sites and present good electrocatalytic effect. The CoP/Ti3C2Tx composite served as the electrocatalyst of Li-O2 battery reaches a high specific discharge capacity of 17,413 mAh/g at 100 mA/g and the lower overpotential of 1.25 V, superior to those of the CoP and Ti3C2Tx individually. The composite of transition metal phosphides and MXene are applied in Li-O2 battery, not only demonstrating higher cycling stability of the prepared CoP/Ti3C2Tx composite, but pointing out the direction for their electrochemical performance improvement.  相似文献   

16.
Fiber-shaped supercapacitors (FSCs) have become one of the significantly strategical flexible energy-storage materials towards future wearable textile electronics and metaverse technologies. Here, we develop the high-performance FSCs based on multiscale dot-wire-sheet heterostructure microfiber of nitrogen-doped carbon dots-Ti3C2Tx/silk nanofibers (NCDs-Ti3C2Tx/SNFs) hybrids via microfluidic fabrication. Due to the enlarged interlayer spacing, plentiful porous channels, accelerated H+ ion transport dynamics, large electrical conductivity and excellent mechanical strength/flexibility, the NCDs-Ti3C2Tx/SNFs possesses high volumetric capacitance (2218.7 F cm−3) and reversible charge–discharge stability in 1 M H2SO4 electrolyte. Furthermore, the solid-state FSCs present high energy density (57.9 mWh cm−3), good capacitance (1157 F cm−3), long-life cycles (82.3 % capacitance retention after 40000 cycles), which realize the actual energy-supply applications (powering lamp, watch and toy car).  相似文献   

17.
《中国化学快报》2021,32(9):2899-2903
Zinc metal has aroused increasing interest as anode material of Zn-based batteries for their energy storage application. However, the uneven Zn stripping/plating processes induce severe dendrite growth, leading to low Coulombic efficiency and safety hazards. Herein, a surface-tuned two-dimensional (2D) MXene Ti3C2Tx scaffold as a robust skeleton is developed to facilitate the uniform Zn stripping/plating. The Ti3C2Tx with high electrical conductivity and unique structure provides fast ionic-transport paths, promising even Zn2+ stripping/plating processes. With suppressed Zn dendrite growth and uniform nucleation, the proposed 2D Ti3C2Tx scaffold for Zn metal anode delivers a low voltage hysteresis of 63 mV and long lifespan over 280 h. This surface-tuned engineering strategy demonstrates the potential application of Zn anode with MXene skeleton for next-generation Zn-based batteries.  相似文献   

18.
The Z-scheme process is a photoinduced electron-transfer pathway in natural oxygenic photosynthesis involving electron transport from photosystem II (PSII) to photosystem I (PSI). Inspired by the interesting Z-scheme process, herein a photocatalytic hydrogen evolution reaction (HER) employing chlorophyll (Chl) derivatives, Chl-1 and Chl-2, on the surface of Ti3C2Tx MXene with two-dimensional accordion-like morphology, forming Chl-1@Chl-2@Ti3C2Tx composite, is demonstrated. Due to the frontier molecular orbital energy alignments of Chl-1 and Chl-2, sublayer Chl-1 is a simulation of PSI, whereas upper layer Chl-2 is equivalent to PSII, and the resultant electron transport can take place from Chl-2 to Chl-1. Under the illumination of visible light (>420 nm), the HER performance of Chl-1@Chl-2@Ti3C2Tx photocatalyst was found to be as high as 143 μmol h−1 gcat−1, which was substantially higher than that of photocatalysts of either Chl-1@Ti3C2Tx (20 μmol h−1 g−1) or Chl-2@Ti3C2Tx (15 μmol h−1 g−1).  相似文献   

19.
《中国化学快报》2021,32(11):3575-3578
The trade-off between the electrochemical performance and mechanical strength is still a challenge for Ti3C2Tx free-standing electrode. Herein, a facile approach was proposed to fabricate a Microfibrillated cellulose@Ti3C2Tx (MFC@Ti3C2Tx) self-assembled microgel film by means of hydrogen bonding linkage. Benefiting from the rich hydroxyl groups on the MFC, the Ti3C2Tx nanosheets coated on the MFC in a time scale of minutes (within 1 min) instead of hours. The ultralong 1D frame of MFC effectively mitigated the re-aggregation of Ti3C2Tx nanosheet. The fluffy MFC@Ti3C2Tx film structure and the constructed 1D/2D conducting Ti3C2Tx pathways in horizontal and vertical directions endowed the fast ion transport of the electrolytes and the improved accessibility to the Ti3C2Tx surface. As a result, the freestanding MFC@Ti3C2Tx microgel film delivered a high specific capacitance of 451F/g. And the rate performance was increased to 71% from the 64% of that of pristine Ti3C2Tx film. Furthermore, the tensile strength of MFC@Ti3C2Tx film was also promoted to 46.3 MPa, 3 folds of that of the pristine Ti3C2Tx film, due to the high strength of MFC and the hydrogen bonding effect.  相似文献   

20.
The room‐temperature synthesis of a new two‐dimensional (2D) zirconium‐containing carbide, Zr3C2Tz MXene is presented. In contrast to traditional preparation of MXene, the layered ternary Zr3Al3C5 material instead of MAX phases is used as source under hydrofluoric acid treatment. The structural, mechanical, and electronic properties of the synthesized 2D carbide are investigated, combined with first‐principles density functional calculations. A comparative study on the structrual stability of our obtained 2D Zr3C2Tz and Ti3C2Tz MXenes at elevated temperatures is performed. The obtained 2D Zr3C2Tz exhibits relatively better ability to maintain 2D nature and strucural integrity compared to Ti‐based Mxene. The difference in structural stability under high temperature condition is explained by a theoretical investigation on binding energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号