首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accessibility of the critical parameters for the superfluid to Mott insulator quantum phase transition in a 2D permanent magnetic lattice is investigated. We determine the hopping matrix element J, the on-site interaction U, and hence the ratio J/U, in the harmonic oscillator wave function approximation. We show that for a range of realistic parameters the critical values of J/U, predicted by different methods for the Bose-Hubbard model in 2D, such as mean field theory and Monte Carlo simulations, are accessible in a 2D permanent magnetic lattice. The calculations are performed for a 2D permanent magnetic lattice created by two crossed arrays of parallel rectangular magnets plus a bias magnetic field.  相似文献   

2.
We study analytically and numerically the properties of one-dimensional chain of cold ions placed in a periodic potential of optical lattice and global harmonic potential of a trap. In close similarity with the Frenkel-Kontorova model, a transition from sliding to pinned phase takes place with the increase of the optical lattice potential for the density of ions incommensurate with the lattice period. We show that at zero temperature the quantum fluctuations lead to a quantum phase transition and melting of pinned instanton glass phase at large values of dimensional Planck constant. After melting the ion chain can slide in an optical lattice. The obtained results are also relevant for a Wigner crystal placed in a periodic potential.  相似文献   

3.
A detailed, rigorous study of the statistical mechanics-screening- and critical properties, phase diagrams, etc., of classical Coulomb monopole and dipole gases in two or more dimensions is presented. The statistical mechanics of the two-dimensionalXY and Villain models is reconsidered and related to the one of two-dimensional lattice Coulomb gases. At low temperatures and moderate densities those gases behave like dipole gases. The Kosterlitz-Thouless transition is analyzed in that perspective and characterized by an order parameter. Techniques useful for a proof of existence of such a transition in a two-dimensional hard-core Coulomb gas are developed and applied to the study of dipole gases.A Sloan Fellow, and supported in part by NSF grant No. DMR 7904355.  相似文献   

4.
The dynamic transition between ordered flow and plastic flow is studied for a two-dimensional driven vortex lattice, in the presence of sharp and dense pinning centers, from numerical simulations. For this system, which does not show smectic ordering, the lattice exhibits a first order transition from a crystal to a liquid, shortly followed by the dynamical transition to plastic flow. The resistivity provides a critical order parameter for the latter, and critical exponents are determined in analogy with a percolation transition. At the boundary between a pinned region and an unpinned one, an anomalous layer is observed, where the vortices are more strongly pinned than in the bulk. Received 22 September 2001  相似文献   

5.
In this paper we propose a two-dimensional lattice hydrodynamic model considering path change in the bidirectional flow of pedestrians on the road. The stability condition and the mKdV equation describing the density wave of pedestrian traffic jamming are obtained by linear stability and nonlinear analyses. The phase diagram produced from these analyses indicates that the phase transition occurs amongst the freely moving phase, the coexisting phase and the uniformly congested phase below the critical point ac. Additionally the results reveal the existence of a critical magnitude of path change (γc). Once the magnitude of path change exceeds the critical value, it gives rise to unstable density waves. Moreover, numerical simulations are performed and the results are in accordance with the theoretical analyses.  相似文献   

6.
7.
AbstractThe phase states and phase transitions in a system consisting of a two-dimensional vortex lattice with defects are studied by the Monte Carlo method. It is shown that a “rotating lattice” phase, which is an intermediate phase between the vortex crystal and vortex liquid phases, is present. The dependence of the temperature of the transition from the rotating lattice phase into a vortex liquid on the strength of the defect potential is determined. The current-voltage characteristics of the system are calculated at various temperatures for point, square, and linear defects. It is shown that the phase state of the system strongly affects its transport properties.  相似文献   

8.
We study phase transitions and thermodynamic properties in the two-dimensional antiferromagnetic Ising model with next-nearest-neighbor interaction on a Kagomé lattice by Monte Carlo simulations. A histogram data analysis shows that a second-order transition occurs in the model. From the analysis of obtained data, we can assume that next-nearest-neighbor ferromagnetic interactions in two-dimensional antiferromagnetic Ising model on a Kagomé lattice excite the occurrence of a second-order transition and unusual behavior of thermodynamic properties on the temperature dependence.  相似文献   

9.
A simplified version of the model by Elser and Joseph for the process of growth of an entropically stabilized, two-dimensional quasicrystal with no dynamics in the bulk, is proposed. The phason fluctuations are modeled by a scalar field on a periodic lattice. The choice of the master equation for the growth is restricted by the requirement that its detailed balance solution describes the equilibrium fluctuations of the field with a quadratic Hamiltonian. The model is parametrized by the chemical potential bias and the microscopic surface tension coefficient . The phase diagram of the system on the plane (, ) shows several distinct regimes of growth, separated by relatively narrow transition zones. Within the regions corresponding to these regimes, the phason fluctuations do not depend on and . Analytic expressions for the spectra of phason fluctuations are obtained and confirmed by numerical simulation. Received 30 June 2000  相似文献   

10.
We present the construction of an optimum ground state for a quantum spin-3/2 antiferromagnet. The spins reside on a decorated square lattice, in which the basis consists of a plaquette of four sites. By using the vertex state model approach we generate the ground state from the same vertices as those used for the corresponding ground state on the hexagonal lattice. The properties of these two ground states are very similar. Particularly there is also a parameter-controlled phase transition from a disordered to a Néel ordered phase. In the regime of this transition, ground state properties can be obtained from an integrable classical vertex model. Received 28 June 1999  相似文献   

11.
Using exact diagonalisation and Density Matrix Renormalisation group (DMRG) approach we analyse the transition to a localised state of a weakly interacting quasi-1D Bose gas subjected to a quasiperiodic potential. The analysis is performed by calculating the superfluid fraction, density profile, momentum distribution and visibility for different periodicities of the second lattice and in the presence (or not) of a weak repulsive interaction. It is shown that the transition is sharper towards the maximally incommensurate ratio between the two lattice periodicities, and shifted to higher values of the second lattice strength by weak repulsive interactions. We also relate our results to recent experiments.  相似文献   

12.
We study the phase structure of a surface model by using the canonical Monte Carlo simulation technique on triangulated, fixed connectivity, and spherical surfaces with many fine holes. The size of a hole is assumed to be of the order of lattice spacing (or bond length) and hence can be negligible compared to the surface size in the thermodynamic limit. We observe in the numerical data that the model undergoes a first-order collapsing transition between the smooth phase and the collapsed phase. Moreover the Hasudorff dimension H remains in the physical bound, i.e., H < 3 not only in the smooth phase but also in the collapsed phase at the transition point. The second observation is that the collapsing transition is accompanied by a continuous transition of surface fluctuations. This second result distinguishes the model in this paper and the previous one with many holes, whose size is of the order of the surface size, because the previous surface model with large-sized holes has only the collapsing transition and no transition of surface fluctuations.  相似文献   

13.
We consider the extended Hubbard model in the atomic limit on a Bethe lattice with coordination number z. By using the equations of motion formalism, the model is exactly solved for both attractive and repulsive intersite potential V. By focusing on the case of negative V, i.e., attractive intersite interaction, we study the phase diagram at finite temperature and find, for various values of the filling and of the on-site coupling U, a phase transition towards a state with phase separation. We determine the critical temperature as a function of the relevant parameters, U/|V|, n and z and we find a reentrant behavior in the plane (U/|V|, T). Finally, several thermodynamic properties are investigated near criticality.  相似文献   

14.
We apply the self-consistent diagram approximation to calculate equilibrium properties of lattice systems. The free energy of the system is represented by a diagram expansion in Mayer-like functions with averaging over states of a reference system. The latter is defined by one-particle mean potentials, which are calculated using the variational condition formulated. As an example, numerical computations for a two-dimensional lattice gas on a square lattice with attractive interaction between nearest neighbours were carried out. The critical temperature, the phase coexistence curve, the chemical potential and particle and vacancy distribution functions coincide within a few per cent with exact or with Monte Carlo data. Received 18 March 1999 and Received in final form 8 November 1999  相似文献   

15.
We study spin 3/2 fermionic cold atoms with attractive interactions confined in a one-dimensional optical lattice. Using numerical techniques, we determine the phase diagram for a generic density. For the chosen parameters, one-particle excitations are gapped and the phase diagram is separated into two regions: one where the two-particle excitation gap is zero, and one where it is finite. In the first region, the two-body pairing fluctuations (BCS) compete with the density ones. In the other one, a molecular superfluid (MS) phase, in which bound-states of four particles form, competes with the density fluctuations. The properties of the transition line between these two regions is studied through the behavior of the entanglement entropy. The physical features of the various phases, comprising leading correlations, Friedel oscillations, and excitation spectra, are presented. To make the connection with experiments, the effect of a harmonic trap is taken into account. In particular, we emphasize the conditions under which the appealing MS phase can be realized, and how the phases could be probed by using the density profiles and the associated structure factor. Lastly, the consequences on the flux quantization of the different nature of the pairing in the BCS and MS phases are studied in a situation where the condensate is in a ring geometry.  相似文献   

16.
In this paper we study the quantum phase transition and low temperature behavior in a square lattice quantum two-dimensional XY model with single-ion anisotropy and spin S=1. Starting with the Villain representation, a Landau-Ginzburg expression is written. The large D phase is studied using the bond operator formalism.  相似文献   

17.
A two-dimensional lattice-gas model with square symmetry is investigated by using the real-space renormalization group (RSRG) approach with blocks of different size and symmetries. It has been shown that the precision of the method depends strongly not only on the number of sites in the block but also on its symmetry. In general, the accuracy of the method increases with the number of sites in the block. The minimal relative error in determining the critical values of the interaction parameters is equal to . Using the RSRG method, we have explored phase diagrams of both a two-dimensional Ising spin model and of a square lattice gas with lateral interactions between adparticles. We also have investigated the influence of the attractive and repulsive interactions on both the thermodynamic properties of the lattice gas and the diffusion of adsorbed particles over surface. We have calculated adsorption isotherms and coverage dependences of the pair correlation function, isothermal susceptibility and the chemical diffusion coefficient. In addition, we have included in our analysis the interaction of the activated particle in the saddle point with its nearest neighbors. We have also used Monte Carlo (MC) technique to calculate these dependences. Despite the fact that both methods constitute very different approaches, the correspondence of the numerical data is surprisingly good. Therefore, we conclude that the RSRG approach can be applied to characterize the thermodynamic and kinetic properties of systems of particles with strong lateral interactions. Received 1st September 1998 and Received in final form 8 March 2000  相似文献   

18.
The selfconsistent diagram approximation (SCDA) is generalized for three-dimensional lattice gases with nearest neighbor repulsive interactions. The free energy is represented in a closed form through elementary functions. Thermodynamical (phase diagrams, chemical potential and mean square fluctuations), structural (order parameter, distribution functions) as well as diffusional characteristics are investigated. The calculation results are compared with the Monte Carlo simulation data to demonstrate high precision of the SCDA in reproducing the equilibrium lattice gas characteristics. It is shown that similarly to two-dimensional systems the specific statistical memory effects strongly influence the lattice gas diffusion in the ordered states. Received 7 August 2002 / Received in final form 22 January 2003 Published online 24 April 2003  相似文献   

19.
Motivated by recent Hall-effect experiment in YbRh(2)Si(2), we study ground state properties of a Kondo lattice model in a two-dimensional square lattice using variational Monte Carlo method. We show that there are two types of phase transition, an antiferromagnetic transition and a topological one (Fermi-surface reconstruction). In a wide region of parameters, these two transitions occur simultaneously without the breakdown of Kondo screening, accompanied by a discontinuous change of the Hall coefficient. This result is consistent with the experiment and gives a novel theoretical picture for the quantum critical point in heavy-fermion systems.  相似文献   

20.
A two-dimensional atomistic realization of Schlögl’s second model for autocatalysis is implemented and studied on a square lattice as a prototypical nonequilibrium model with first-order transition. The model has no explicit symmetry and its phase transition can be viewed as the nonequilibrium counterpart of liquid-vapor phase separations. We show some familiar concepts from study of equilibrium systems need to be modified. Most importantly, phase coexistence can be a generic feature of the model, occurring over a finite region of the parameter space. The first-order transition becomes continuous as a temperature-like variable increases. The associated critical behavior is studied through Monte Carlo simulations and shown to be in the two-dimensional Ising universality class. However, some common expectations regarding finite-size corrections and fractal properties of geometric clusters for equilibrium systems seems to be inapplicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号