首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Пусть {λ n 1 t8 — монотонн ая последовательнос ть натуральных чисел. Дл я каждой функции fεL(0, 2π) с рядом Фурье строятся обобщенные средние Bалле Пуссена $$V_n^{(\lambda )} (f;x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{k = 1}^n (a_k \cos kx + b_k \sin kx) + \mathop \sum \limits_{k = n + 1}^{n + \lambda _n } \left( {1 - \frac{{k - n}}{{\lambda _n + 1}}} \right)\left( {a_k \cos kx + b_k \sin kx} \right).$$ Доказываются следую щие теоремы.
  1. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность {Vn (λ)(?;x)} расходится почти вс юду.
  2. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность $$\left\{ {\frac{1}{\pi }\mathop \smallint \limits_{ - \pi /\lambda _n }^{\pi /\lambda _n } f(x + t)\frac{{\sin (n + \tfrac{1}{2})t}}{{2\sin \tfrac{1}{2}t}}dt} \right\}$$ расходится почти всю ду
.  相似文献   

2.
Necessary and sufficient conditions are found in order for the system of successive primitives $$\left\{ {F_n (z) = \sum\nolimits_{k = 0}^\infty {\frac{{a_{k - n} }}{{k!}}z^k } } \right\}, n = 0,1,2, ...,$$ generated by the integer-valued function \(F_n (z) = \sum\nolimits_{k = 0}^\infty {\frac{{a_k }}{{k!}}zk} \) of growth no higher than first order of the normal typeσ(F0(z) ε [1;σ] to form a quasi-power basis in the class [1; σ].  相似文献   

3.
Let $ \mathcal{P}_n $ denote the set of algebraic polynomials of degree n with the real coefficients. Stein and Wpainger [1] proved that $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \leqslant C_n , $$ where C n depends only on n. Later A. Carbery, S. Wainger and J. Wright (according to a communication obtained from I. R. Parissis), and Parissis [3] obtained the following sharp order estimate $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \sim \ln n. $$ . Now let $ \mathcal{T}_n $ denote the set of trigonometric polynomials $$ t(x) = \frac{{a_0 }} {2} + \sum\limits_{k = 1}^n {(a_k coskx + b_k sinkx)} $$ with real coefficients a k , b k . The main result of the paper is that $$ \mathop {\sup }\limits_{t( \cdot ) \in \mathcal{T}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{it(x)} }} {x}dx} } \right| \leqslant C_n , $$ with an effective bound on C n . Besides, an analog of a lemma, due to I. M. Vinogradov, is established, concerning the estimate of the measure of the set, where a polynomial is small, via the coefficients of the polynomial.  相似文献   

4.
In his second notebook, Ramanujan says that $$\frac{q}{{x + }}\frac{{q^4 }}{{x + }}\frac{{q^8 }}{{x + }}\frac{{q^{12} }}{{x + }} \cdots = 1 - \frac{{qx}}{{1 + }}\frac{{q^2 }}{{1 - }}\frac{{q^3 x}}{{1 + }}\frac{{q^4 }}{{1 - }} \cdots $$ “nearly” forq andx between 0 and 1. It is shown in what senses this is true. In particular, asq → 1 the difference between the left and right sides is approximately exp ?c(x)/(l-q) wherec(x) is a function expressible in terms of the dilogarithm and which is monotone decreasing with c(0) = π2/4,c(1) = π2/5; thus the difference in question is less than 2· l0?85 forq = 0·99 and allx between 0 and 1.  相似文献   

5.
We investigate the question of the regularized sums of part of the eigenvalues zn (lying along a direction) of a Sturm-Liouville operator. The first regularized sum is $$\sum\nolimits_{n = 1}^\infty {(z_n - n - \frac{{c_1 }}{n} + \frac{2}{\pi } \cdot z_n arctg \frac{1}{{z_n }} - \frac{2}{\pi }) = \frac{{B_2 }}{2} - c_1 \cdot \gamma + \int_1^\infty {\left[ {R(z) - \frac{{l_0 }}{{\sqrt z }} - \frac{{l_1 }}{z} - \frac{{l_2 }}{{z\sqrt z }}} \right]} } \sqrt z dz,$$ where the zn are eigenvalues lying along the positive semi-axis, z n 2 n, $$l_0 = \frac{\pi }{2}, l_1 = - \frac{1}{2}, l_2 = - \frac{1}{4}\int_0^\pi {q(x) dx,} c_1 = - \frac{2}{\pi }l_2 ,$$ , B2 is a Bernoulli number, γ is Euler's constant, and \(R(z)\) is the trace of the resolvent of a Sturm-Liouville operator.  相似文献   

6.
Consider the Riesz product $\mu _a = \mathop \prod \limits_{n = 1}^\infty (1 + r\cos (q^n t + \varphi _n ))$ . We prove the following approximative formula for the dimension ofμ a. $$\dim \mu _a = 1 - \frac{1}{{\log q}}\int_0^{2\pi } {(1 + r\cos x)\log (1 + r\cos x)\frac{{dx}}{{2\pi }} + 0\left( {\frac{r}{{q^2 \log q}}} \right).}$$   相似文献   

7.
A multidimensional continued fraction algorithm is a generalization of the ordinary continued fraction algorithm which approximates a vector η=(y 1,...,y n ) by a sequence of vectors \(\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right)\) . If 1,y 1,...,y n are linearly independent over the rationals, then we say that the expansion of η isstrongly convergent if $$\mathop {\lim }\limits_{j \to \infty } \left| {\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right) - \eta } \right| = 0.$$ This means that the algorithm converges at an asymptotically faster rate than would be guaranteed just by picking a denominator at random. The ordinary continued fraction algorithm can be defined using the Farey sequence, approximating a number by the endpoints of intervals which contain it. Analogously, we can define a Farey netF n, m to be a triangulation of the set of all vectors \(\left( {\frac{{a_1 }}{{a_{n + 1} }}, \ldots ,\frac{{a_n }}{{a_{n + 1} }}} \right)\) witha n+1 ≤m into simplices of determinant ±1, and use this algorithm to define a multidimensional continued fraction for η in which the approximations are the vertices of the simplices containing η in a sequence of Farey nets. The concept of a Farey net was proposed by A. Hurwitz, and R. Mönkemeyer developed a specific continued fraction algorithm based on it. We show that Mönkemeyer's algorithm discovers dependencies among the coordinates of η in two dimensions, but that no continued fraction algorithm based on Farey nets can discover dependencies in three or more dimensions, and none can be strongly convergent, even in two dimensions. Thus there are no good multidimensional algorithms based on Farey nets.  相似文献   

8.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

9.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

10.
Let {b k (n)} n=0 be the Bell numbers of order k. It is proved that the sequence {b k (n)/n!} n=0 is log-concave and the sequence {b k (n)} n=0 is log-convex, or equivalently, the following inequalities hold for all n?0, $$1 \leqslant \frac{{b_k (n + 2)b_k (n)}}{{b_k (n + 1)^2 }} \leqslant \frac{{n + 2}}{{n + 1}}$$ . Let {α(n)} n=0 be a sequence of positive numbers with α(0)=1. We show that if {α(n)} n=0 is log-convex, then α(n)α(m)?α(n+m), ?n,m?0. On the other hand, if {α(n)/n!} n=0 is log-concave, then $$\alpha (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)\alpha (n)\alpha (m),{\text{ }}\forall n,m \geqslant 0$$ . In particular, we have the following inequalities for the Bell numbers $$b_k (n)b_k (m) \leqslant b_k (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)b_k (n)b_k (m),{\text{ }}\forall n,m \geqslant 0$$ . Then we apply these results to characterization theorems for CKS-space in white noise distribution theory.  相似文献   

11.
The following theorem is proved. If $$f(x) = \frac{{\alpha _0 }}{2} + \sum\nolimits_k^\infty \alpha _k \cos 2\pi kx + b_k \sin 2\pi kx,$$ wherea k ↓ 0 and bk ↓ 0, then $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\nolimits_{s = 0}^{n - 1} {f\left( {x + \frac{s}{n}} \right) = \frac{{\alpha _0 }}{2}} $$ on (0, 1) in the sense of convergence in measure. If in additionf(x) ε L2 (0, 1), then this relation holds for almost all x.  相似文献   

12.
On Kantorovich-Stieltjes operators   总被引:1,自引:0,他引:1  
Let ν be a finite Borel measure on[0,1]The Kantorovich-Stieltjes polynomials are de-fined byK_n ν=(n+1)N_(k,n)(nN),where N_(k,n)(x)=x~k(1-x)~(n-k)(x[0,1],k=1,2,…,n)are the basic Bernsteinpolynomials and I_(k,n):=[k/(n+1),(k+1)/(n+1)](k=0,1,…,n;nN).We prove that the maximaloperator of the sequence(K_n)is of weak type and the sequence of polynomials(K_n ν)con-verges a.e.on[0,1]to the Radon-Nikodym derivative of the absolutely continuous part of  相似文献   

13.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

14.
The hyperplanes in the affine geometry AG(d, q) yield an affineresolvable design with parameters $2 - (q^d ,q^{d - 1} ,\frac{{q^{d - 1} - 1}}{{q - 1}})$ . Jungnickel [3]proved an exponential lower bound on the number of non-isomorphic affine resolvable designs with these parametersfor d ≥ 3. The bound of Jungnickel was improved recently [5] by a factor of $q^{\frac{{d^2 + d - 6}}{2}} (q - 1)^{d - 2}$ for any d ≥ 4. In this paper, a construction of $2 - (q^d ,q^{d - 1} ,\frac{{q^{d - 1} - 1}}{{q - 1}})$ designs based on group divisible designs is given that yieldsat least $$\frac{{\left( {q^{d - 1} + q^{d - 2} + \cdots + 1} \right)!\left( {q - 1} \right)}}{{\left| {{\text{P}}\Gamma {\text{L(}}d,q{\text{)}}} \right|\left| {{\text{A}}\Gamma {\text{L(}}d,q{\text{)}}} \right|}}$$ non-isomorphic designs for any d ≥ 3. This new bound improves the bound of[5] by a factor of $$\frac{1}{{q^d }}\mathop \Pi \limits_{i = 1}^{(q^{d - 1} - q)/(q - 1)} (q^{d - 1} + i).$$ For any given q and d, It was previously known [2,11] that there are at least 8071non-isomorphic 2-(27,9,4) designs. We show that the number of non-isomorphic 2-(27,9,4) is atleast 245,100,000.  相似文献   

15.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

16.
Let $h(t,x): = p.v. \sum\limits_{n \in Z\backslash \left| 0 \right|} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} = \mathop {\lim }\limits_{N \to \infty } \sum\limits_{0< \left| n \right| \leqslant N} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} $ ( $(i = \sqrt { - 1;} t,x$ -real variables). It is proved that in the rectangle $D: = \left\{ {(t,x):0< t< 1,\left| x \right| \leqslant \frac{1}{2}} \right\}$ , the function h satisfies the followingfunctional inequality: $\left| {h(t,x)} \right| \leqslant \sqrt t \left| {h\left( {\frac{1}{t},\frac{x}{t}} \right)} \right| + c,$ where c is an absolute positive constant. Iterations of this relation provide another, more elementary, proof of the known global boundedness result $\left\| {h; L^\infty (E^2 )} \right\| : = ess sup \left| {h(t,x)} \right|< \infty .$ The above functional inequality is derived from a general duality relation, of theta-function type, for solutions of the Cauchy initial value problem for Schrödinger equation of a free particle. Variation and complexity of solutions of Schrödinger equation are discussed.  相似文献   

17.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

18.
In this paper we prove the existence of invariant curves and thus stability for all time for a class of Hamiltonian systems with time dependent potentials: $$\frac{{d^2 x}}{{dt^2 }} + Vx(x,t) = 0,x \in R^1 $$ where $\begin{gathered} V(x,t) = \tfrac{1}{{2n + 2}}x^{2n + 2} + \Sigma _{j = 0}^{2n} \tfrac{{Pj(t)}}{{j + 1}}x^{j + 1} ,p_j (t + 1) = p_j (t),p_j \in C^2 ,2n \geqslant j \geqslant n + 1;p_j \in \\ C^1 ,n \geqslant j \geqslant 0,n \geqslant 1. \\ \end{gathered} $   相似文献   

19.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

20.
It is shown by analytical means that, if one assumes the Riemann hypothesis, the asymptotic formula $$\sum\limits_{n \leqslant x} {\omega (n) = x 1n1n } x + B - x\int_l^{x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } {\frac{{\{ t\} }}{{t^2 (1n x - 1n t)}}dt + O(x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + \varepsilon } )} $$ holds. This improves a result ofB. Saffari, who got a weaker error term by using the Dirichlet “hyperbola method”. The above formula, in turn, implies the Riemann hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号