首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermoelastic effect has been used to study stress distributions in a number of in-plane loading problems. Analysis of the temperature distribution has been largely limited to isotropic one-dimensional approximations with heat transfer through the thickness of the specimen. In sonic fatigue, specimens undergo fully reversed bending with a stress gradient along the length of the specimen as well as through the thickness. This has also been modeled as a one-dimensional heat transfer problem with negligible heat transfer along the specimen length. The authors solve this as a two-dimensional problem for an isotropic material to determine the effect of heat transfer.  相似文献   

2.
Numerical results for the stress state around a circular hole in a [0/±45/0]s boron-epoxy plate under tensile loading are presented. This serves as a model for the initial stress state around the hole during fatigue loading. Comparison is drawn with experimental results for a fatigued specimen obtained from thermography and radiography. Using these results, an interpretation of the effects of the initial stress state on the thermal behavior and on failure initiation is given. This interpretation shows that the circumferential normal stresses are responsible for the initial heat generation and failure initiation in the fatigued specimen.  相似文献   

3.
Several fatigue-test parameters, including cyclic frequency, prefatigue material conditioning (preloading and step loading) and test-control modes (strain control and load control) are investigated and their effect on the fatigue response of composite materials is discussed. A conceptual model based on the test results is offered to aid in the understanding of fatigue processes in composite materials and the effect of frequency on fatigue response.  相似文献   

4.
5.
A new method of plotting limit stress diagrams is set forth. The method is based on the hypothesis of unified limit diagram invariant to the number of cycles to failure. The unified diagram is given by a transcendental power function whose exponent is considered an additional material constant characterizing the sensitivity of the material to cycle asymmetry (stress ratio). The equations derived on the basis of this function encompass all forms of limit stress diagrams, including convex, nearly rectilinear, and concave ones. The method is tested for a wide range of metallic and composite materials subjected to asymmetric tension-compression, bending, and torsion.Translated from Prikladnaya Mekhanika, Vol. 40, No. 11, pp. 106–116, November 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

6.
In this study, we carried out a numerical simulation of transient heat transfer in a composite passive system consisting of air–phase change material–air, arranged as a rectangular enclosure. The vertical boundaries of the enclosure are isothermal and the horizontal ones adiabatic. The enthalpy formulation with a fixed grid is used to study the process of phase change with liquid–solid interface zone controlled by natural convection. The flow in this zone is simulated by a model based on the Darcy porous medium. The numerical solution of the mathematical model is done using finite difference–control volume algorithm. The influence of the geometrical and thermal parameters is studied. It is found that subcooling coefficient is the most important parameter influencing heat transfer, and for a given subcooling, there is an optimum phase change partition thickness.  相似文献   

7.
A novel approach is proposed for the use of cohesive elements in the analysis of delamination propagation in composite materials under high-cycle fatigue loading. The method is applicable to delamination propagation within the Paris-law regime and is suitable for the analysis of three-dimensional structures typical of aerospace applications. The major advantages of the proposed formulation are its complete independence of the cohesive zone length – which is a geometry-dependent parameter – and its relative insensitivity to mesh refinement. This is only possible via the introduction of three nonlocal algorithms, which provide (i) automated three-dimensional tracking of delamination fronts, (ii) an estimation of direction of crack propagation and (iii) accurate and mesh-insensitive integration of strain energy release rate. All calculations are updated at every increment of an explicit time-integration finite element solution, which models the envelopes of forces and displacements with an assumption of underlying constant cyclic loading. The method was implemented as a user-defined subroutine in the commercial finite element software LS-Dyna and supports the analysis of complex three-dimensional models. Results are presented for benchmark cases such as specimens with central cut plies and centrally-loaded circular plates. Accurate predictions of delamination growth rates are observed for different mesh topologies in agreement with the Paris-laws of the material.  相似文献   

8.
9.
A dynamic model for a two degree-of-freedom planar robot arm is derived in this study. The links of the arm, connected to prismatic and revolute joints, are considered to be flexible. They are assumed to be fabricated from either aluminum or laminated composite materials. The model is derived based on the Timoshenko beam theory in order to account for the rotary inertia and shear deformation. These effects are significant in modeling flexible links connected to prismatic joints. The deflections of the links are approximated by using a shear-deformable beam finite element. Hamilton's principle is implemented to derive the equations describing the combined rigid and flexible motions of the arm. The resulting equations are coupled and highly nonlinear. In view of the large number of equations involved and their geometric nonlinearity (topological and quadratic), the solution of the equations of motion is obtained numerically by using a stiff integrator.The digital simulation studies examine the interaction between the flexible and the rigid body motions of the robot arm, investigate the improvement in the accuracy of the model by considering the flexibility of all rather than some of the links of the arm, assess the significance of the rotary inertia and shear deformation, and illustrate the advantages of using advanced composites in the structural design of robotic manipulators.  相似文献   

10.
11.
Here we consider the class of composites in which the strength of the contact between the materials is less than the strength of the components. It is found that the strength of such a material is independent of the size of the initial defect within certain limits but is determined by the shape and size of the most hazardous [weakest] inclusion. A theoretical relationship is deduced for the strength in relation to the size of the largest inclusion, which agrees well with experiment [1], This mechanism probably plays a part in the failure of steel and may be one reason for the scale effect in steel.  相似文献   

12.
Summary  This paper presents an M-integral analysis for the microcracked anisotropic composite materials. By using an elementary solution derived for a single finite crack subjected to a concentrated force on crack faces, the problem of strong interacting, arbitrarily oriented and located microcracks in an anisotropic composite materials is reduced to a system of Fredholm integral equations. The crack-tip fracture parameters, such as the stress intensity factors, are evaluated from a numerical solution of the system of integral equations. Its dependence on the coordinate system, calculation, and physical interpretation of the M-integral are discussed in the interaction problem. Finally, a numerical example of the damage evaluation by the M-integral analysis is given. Received 24 September 1999; accepted for publication 8 February 2000  相似文献   

13.
Interlaminar beam tests in the form of three-point and four-point flexure are examined both experimentally and analytically. Experimental data are obtained on unidirectional composites. Photomicrographs of actual failure modes and results of a stress analysis based on classical theory of elasticity are utilized to supplement the experimental data. Complex failure modes in the presence of extremely high combined stress gradients are observed and cast serious doubts on the usefulness of interlaminar-beam experiments for characterizing the delamination resistance of composite materials. Further difficulties are encountered with ductile-matrix-resin composites.Paper was presented at V International Congress on Experimental Mechanics held in Montreal, Quebec, Canada on June 10–15, 1984.  相似文献   

14.
In this paper, some current anisotropic failure criteria in the forms of tensor polynomials are investigated. In order to determine the interaction coefficients of the failure criterion, a non-linear optimization method is proposed. The results obtained by different theories as well as the optimization method are compared with the test data of some composite materials. The comparison shows that the optimization method is effective.  相似文献   

15.
幂律全塑性罚函数随机有限元   总被引:2,自引:0,他引:2  
用罚函数有限元方法解决平面应变下的体积下可压缩问题,应用摄动有限元理论发展幂律全塑性随机有限元,并以弹性模是E,泊松比u和节点坐标等的基本随机变量,推导有限元列式,给出单板受拉,梁受弯的算例。  相似文献   

16.
在循环载荷作用下, 合金材料发生裂纹萌生、扩展直至断裂的周次在107以上的过程被称为超高周疲劳 (very-high-cycle fatigue, VHCF).本综述将从30年前超高周疲劳的研究起源讲起, 直到近年的最新进展.引言之后的内容包括: 超高周疲劳研究的起源, 超高周疲劳的主要特征, 超高周疲劳裂纹萌生特征区和特征参量, 裂纹萌生特征区的形成机理与模型, 超高周疲劳性能预测模型. 在叙述中, 试图回答下列问题: 什么是超高周疲劳?为什么要研究超高周疲劳?超高周疲劳的关键科学问题是什么?超高周疲劳的S-N曲线趋势为什么发生变化?超高周疲劳裂纹为什么萌生于材料 (试样) 内部?裂纹内部萌生的过程和机理是什么? 上述问题有的可以给出明确的回答, 有的则是现阶段的最新结果, 并有待于对问题的继续探索.  相似文献   

17.
合金材料超高周疲劳的机理与模型综述   总被引:2,自引:0,他引:2  
在循环载荷作用下, 合金材料发生裂纹萌生、扩展直至断裂的周次在107以上的过程被称为超高周疲劳 (very-high-cycle fatigue, VHCF).本综述将从30年前超高周疲劳的研究起源讲起, 直到近年的最新进展.引言之后的内容包括: 超高周疲劳研究的起源, 超高周疲劳的主要特征, 超高周疲劳裂纹萌生特征区和特征参量, 裂纹萌生特征区的形成机理与模型, 超高周疲劳性能预测模型. 在叙述中, 试图回答下列问题: 什么是超高周疲劳?为什么要研究超高周疲劳?超高周疲劳的关键科学问题是什么?超高周疲劳的S-N曲线趋势为什么发生变化?超高周疲劳裂纹为什么萌生于材料 (试样) 内部?裂纹内部萌生的过程和机理是什么? 上述问题有的可以给出明确的回答, 有的则是现阶段的最新结果, 并有待于对问题的继续探索.   相似文献   

18.
19.
The predictive capacity of ductile fracture models when applied to composite and multiphase materials is related to the accuracy of the estimated stress/strain level in the second phases or reinforcements, which defines the condition for damage nucleation. Second phase particles contribute to the overall hardening of the composite before void nucleation, as well as to its softening after their fracture or decohesion. If the volume fraction of reinforcement is larger than a couple of percents, this softening can significantly affect the resistance to plastic localization and cannot be neglected. In order to explicitly account for the effect of second phase particles on the ductile fracture process, this study integrates a damage model based on the Gologanu–Leblond–Devaux constitutive behavior with a mean-field homogenization scheme. Even though the model is more general, the present study focuses on elastic particles dispersed in an elasto-plastic matrix. After assessing the mean-field homogenization scheme through comparison with two-dimensional axisymmetric finite element calculations, an extensive parametric study is performed using the integrated homogenization-damage model. The predictions of the integrated homogenization-damage model are also compared with experimental results on cast aluminum alloys, in terms of both the fracture strain and overall stress–strain curves. The study demonstrates the complex couplings among the load transfer to second phase particles, their resistance to fracture, the void nucleation mode, and the overall ductility.  相似文献   

20.
A tensile impact test apparatus capable of applying a pure axial tensile loading to even a highly orthotropic composite material, e.g., a unidirectionally reinforced composite, was designed and constructed. Existing impact test methods such as Charpy, Izod and plate impact induce very complex stress states, making the interpretation of results difficult. Details of the apparatus design, and instrumentation problems which had to be overcome, are discussed.was Graduate Student, Composite Materials Research Group, P.O. Box 3295, University of Wyoming, Laramie, WY 82071.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号