首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thespontaneousself-assemblytechniqueprovidesaconvenientandpowerfultooltopreparecompactmonolayerswithwell-definedcomposition,structureandthicknessl.However,theexistenceofstrUcturaldefectsanddisorderinself-assemblymayinfluenceitspropertiesinmanyfields.Soitisincreasinglyclearthatthecharacterizationofdefectsisanimportantissuewhichneedstobeaddressedinmanyapplications.Thepurposeofthisworkistostudythedefectsand"collapsed"sitesinAulthiolmonolayerbycyclicvoltanunetryandelectrochemicalimpedancespectros…  相似文献   

2.
Duet0itssimilaritytobiomembraneinmicroenvironmentanditshighmechanicalstability,thesupportedlipidbilayerassemblyhasprovidedago0dmodelnot0nlytostudybiomembranes'-',butalsotodevelopbiomo1ecularelectronicdevices'=.Becausethealkanethi0lmonolayersongoldarecharacteristicoftheirhighstructureorder,compactnessandstability',recentinterestsinsupp0rtedbilayersf0cus0nth0secomp0sed0faselfassembledthi0lm0nolayerandaIipidm0noIayer.""-".Inthiswork,werep0rttheasymmetricalconductivityofAu/ODT-PCbilayerm0dified…  相似文献   

3.
Self-assembled monolayers (SAMs) of liquid crystalline thiol-terminated alkoxycyanobiphenyl molecules with different alkyl chain lengths on Au surface have been studied for the first time using electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The barrier property of the SAM-modified surfaces was evaluated using two different redox probes, namely potassium ferro/ferri cyanide and hexaammineruthenium(III) chloride. It was found that for short-length alkyl chain thiol (C5) the electron transfer reaction of hexaammineruthenium(III) chloride takes place through tunneling mechanism. In contrast, redox reaction of potassium ferro/ferri cyanide is almost completely blocked by the SAM-modified Au surface. From the impedance data, a surface coverage value of >99.9% was calculated for all the thiol molecules.  相似文献   

4.
Metal-molecule-metal junctions were fabricated by contacting Au-supported alkyl or benzyl thiol self-assembled monolayers (SAMs) with an Au-coated atomic force microscope (AFM) tip. The tip-SAM microcontact is approximately 15 nm(2), meaning the junction contains approximately 75 molecules. Current-voltage (I-V) characteristics of these junctions were probed as a function of SAM thickness and load applied to the microcontact. The measurements showed: (1) the I-V traces were linear over +/-0.3 V, (2) the junction resistance increased exponentially with alkyl chain length, (3) the junction resistance decreased with increasing load and showed two distinct power law scaling regimes, (4) resistances were a factor of 10 lower for junctions based on benzyl thiol SAMs compared to hexyl thiol SAMs having the same thickness, and (5) the junctions sustained fields up to 2 x 10(7) V/cm before breakdown. I-V characteristics determined for bilayer junctions involving alkane thiol-coated tips in contact with alkane thiol SAMs on Au also showed linear I-Vs over +/-0.3 V and the same exponential dependence on thickness. The I-V behavior and the exponential dependence of resistance on alkyl chain length are consistent with coherent, nonresonant electron tunneling across the SAM. The calculated conductance decay constant (beta) is 1.2 per methylene unit ( approximately 1.1 A(-)(1)) for both monolayer and bilayer junctions, in keeping with previous scanning tunneling microscope and electrochemical measurements of electron transfer through SAMs. These measurements show that conducting probe-AFM is a reliable method for fundamental studies of electron transfer through small numbers of molecules. The ability to vary the load on the microcontact is a unique characteristic of these junctions and opens opportunities for exploring electron transfer as a function of molecular deformation.  相似文献   

5.
Supported bilayer lipid membrane (s‐BLM) containing one‐dimensional compound 1, TCNQ‐based (TCNQ=7,7,8,8‐tetracyanoquinodimethane) organometallic compound {(Cu2(μ‐Cl)(μ‐dppm)2)(μ2‐TCNQ)}, was prepared and characterized on the self‐assembled monolayer (SAM) of 1‐octadecylmercaptan (C18H37SH) deposited onto Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that the compound 1, dotted inside s‐BLM, can act as mediator for electron transfer across the membrane. Two redox peaks and the charge‐transfer resistance of 400 kΩ were observed for compound 1 inside s‐BLM. The mechanism of the electron transfer across s‐BLM by TCNQ is by electron hopping while TCNQ‐based organometallic compound is by conducting. Further conclusion drawn from this finding is that the TCNQ‐based organometallic compound embedded inside s‐BLM exhibits excellent electron transfer ability than that of free TCNQ. This opens a new path for the development of s‐BLM sensor and/or biosensor by incorporation with TCNQ‐based organometallic compounds.  相似文献   

6.
Single-wall carbon nanotubes (SWNTs) chemically assembled on gold substrates were employed as electrodes to investigate the charge transfer process between SWNTs and the underlying substrates. Cyclic voltammetry (CV) indicates that the assembled SWNTs allow electron communication between a gold electrode and the redox couple in solution, though the SWNTs are linked directly onto the insulating monolayer of 11-amino-n-undecanethiol (AUT) on the Au substrate. An electron transfer (ET) mechanism, which contains an electron tunneling process across the AUT monolayer, is proposed to explain the CV behavior of Au/AUT/SWNT electrodes. Electrochemical measurements show that the apparent electron tunneling resistance, which depends on the surface density of assembled SWNTs, has apparent effects similar to those of solution resistance on CV behavior . The theory of solution resistance is used to describe the apparent tunneling resistance. The experimental results of the dependence of ET parameter psi on the potential scan rate upsilon are in good agreement with the theoretical predictions. Kinetic studies of the chemical assembly of SWNTs by atomic force microscopic (AFM), electrochemical, and Raman spectroscopic methods reveal that two distinct assembly kinetics exist: a relatively fast step that is dominated by the surface reaction, and a successive slow step that is governed by bundle formation.  相似文献   

7.
Neatly arranged gold nanoparticles (AuNPs) were directly electrodeposited on an electrochemically polymerized self‐assembled monolayer (SAM) of thiol‐functionalized 3,4‐ethylenedioxythiophene (EDOT) derivative, EDTMSHA. A thiolated single‐stranded DNA (ssDNA) aptamer with high specificity to LPS was immobilized on the AuNPs/conducting polymer composite film, serving as sensing platform for LPS detection. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscope (SEM), and atomic force microscopy (AFM) were utilized to characterize the modification and detection processes. The electron transfer resistance was found to have a linear relationship with LPS concentration from 0.1 pg/mL to 1 ng/mL.  相似文献   

8.
The adsorption and release behavior of single-stranded DNA-wrapped single-walled carbon nanotubes (ssDNA-w-SWCNTs) on alkylthiol self-assembled monolayer (SAM) surface was systematically characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Fast electron transfer between bare Au electrode and redox species blocked by the alkylthiol SAM can be restored by SWCNTs or ssDNA-w-SWCNTs. The release of ssDNA-w-SWCNTs is carried out by positive or negative desorption potential. SWCNTs/SAM or ssDNA-w-SWCNTs/SAM is completely removed from Au surface at +0.90 V or -1.40 V (vs. 3.0 M KCl|Ag|AgCl). The controlled release of SWCNTs/SAM and ssDNA-w-SWCNTs/SAM holds great promise for gene delivering.  相似文献   

9.
In this paper, we describe a novel method for measuring the forward heterogeneous electron-transfer rate constant (kf) through the thiol monolayer of gold monolayer protected clusters (MPCs) in solution using scanning electrochemical microscopy (SECM). Applying the equations for mixed mass-transfer and electron-transfer processes, we develop a new formula using only the diffusion coefficient and the tip radius and use it as part of a new method for evaluating SECM approach curves. This method is applied to determine the electron-transfer rates from a series of SECM approach curves for monodisperse hexanethiol MPCs and for polydisperse hexanethiol, octanethiol, decanethiol, dodecanethiol, and 2-phenyethylthiol gold MPCs. Our results show that as the alkanethiol length increases the rate of electron transfer decreases in a manner consistent with the previously proposed tunneling mechanism for the electron transfer in MPCs. However, the effective tunneling coefficient, Beta, is found to be only 0.41 A-1 for alkanethiol passivated MPCs compared to typical values of 1.1 A-1 for alkanethiols as self-assembled monolayers on two-dimensional gold substrates. Similar SECM approach curve results for Pt and Au MPCs indicate that the electron-transfer rate is dependent mostly on the composition of the thiol layer and not on differences in the core metal.  相似文献   

10.
The electrochemical behavior of arrays of Au nanoparticles assembled on Au electrodes modified by 11-mercaptoundecanoic acid (MUA) and poly-L-lysine (PLYS) was investigated as a function of the particle number density. The self-assembled MUA and PLYS layers formed compact ultrathin films with a low density of defects as examined by scanning tunneling microscopy. The electrostatic adsorption of Au particles of 19 +/- 3 nm on the PLYS layer resulted in randomly distributed arrays in which the particle number density is controlled by the adsorption time. In the absence of the nanoparticles, the dynamics of electron transfer involving the hexacynoferrate redox couple is strongly hindered by the self-assembled film. This effect is primarily associated with a decrease in the electron tunneling probability as the redox couple cannot permeate through the MUA monolayer at the electrode surface. Adsorption of the Au nanoparticles dramatically affects the electron-transfer dynamics even at low particle number density. Cyclic voltammetry and impedance spectroscopy were interpreted in terms of classical models developed for partially blocked surfaces. The analysis shows that the electron transfer across a single particle exhibits the same phenomenological rate constant of electron transfer as for a clean Au surface. The apparent unhindered electron exchange between the nanoparticles and the electrode surface is discussed in terms of established models for electron tunneling across metal-insulator-metal junctions.  相似文献   

11.
Self-assembled monolayers of poly(3-alkylthiophene) on gold electrodes are examined by cyclic voltammetry in solutions containing electroactive species. Two well-separated electron transfer processes, namely, electron tunneling through the monolayer and electron exchange at pinholes (defects) of the monolayer are observed. The voltammetric responses of the pinhole electron transfer process take place around the standard potential of the electroactive species and resemble those of a nanoelectrode ensemble of independent individual nanoelectrodes. The voltammetric characteristics of the electron tunneling agree well with predictions of the Marcus theory. Satisfactory values of tunneling coefficient, standard rate constant and organization energy are derived from the voltammetric data.  相似文献   

12.
Scanning probe microscopy was used to monitor the resulting surface of the oriented incorporation of cytochrome c oxidase into electrode supported lipid bilayer at four crucial stages with molecular resolution. We were able to reveal the formation of a densely packed monolayer of the active ester dithio(succiniimidylepropionate) (DTSP) and the covalent linkage of the nitrilotriacetic acid (NTA) to the thiol anchored DTSP by scanning tunneling microscopy. Atomic force microscopy investigations showed that the detergent solubilized oxidase is immobilized as monomers and small aggregates via histidine residues. Finally, the reconstitution of the proteins within the supported membrane was verified. The amount of oxidase immobilized within the solid supported membrane was estimated.  相似文献   

13.
Bilayers incorporated with ferrocene consisting of self-assembled octadecanethiol and lipid monolayer on gold substrates were fabricated. Its electrochemical behaviors in solutions containing different redox couples were investigated by cyclic voltammetry and ac impedance. The transmembrane electron transfer reaction across octadecanethiol self-assembled film and an adsorbed phospholipid layer mediated by ferrocene have been observed in the solution of Fe(CN)6(3-/4-). The formal potential difference between mediator in bilayer lipid membrane (BLM) and redox couple in solution has a great impact on the transmembrane electron transfer behavior. The ferrocene-modified BLM electrodes might be useful for constructing a bilayer-based electrochemical current rectifying device.  相似文献   

14.
A simple efficient strategy for the simultaneous synthesis and anchoring of liquid crystal (LC)-stabilised gold nanoparticles (NPs) on indium tin oxide (ITO) substrate is described. A monolayer of 3-mercaptopropyltrimethoxy silane (MPS) compound was formed on ITO and quality of the monolayer was assessed using electrochemical techniques namely cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Gold NP preparation was carried out on this monolayer-modified substrate (and on bare ITO), in a single-step reaction, simply by drop-casting a solution containing an appropriate amount of chloroauric acid and a LC compound possessing a terminal amino group, on the MPS monolayer-modified substrate and heating (70degree) for 2-3 min.. The LC compound served as a reducing agent as well as a capping ligand. LC-capped NPs were chemically anchored onto the ITO substrate through bonding to thiol moiety of the MPS. The CV and EIS analysis of the MPS monolayer showed a complete blocking behaviour for the electron transfer across the electrode/electrolyte interface confirming the formation of a high-quality dense compact monolayer. On the other hand, upon immobilisation of LC-gold NP composite on self-assembled monolayer-modified ITO substrates, both CV and impedance studies showed a small current indicating the gold NP-mediated electron transfer, thus confirming the successful immobilisation of NPs.  相似文献   

15.
Cytochrome c was coordinatively bound to self-assembled monolayers of pyridine-terminated alkanethiols on Au and Ag electrodes. The mechanism of heterogeneous electron transfer of the immobilized protein was investigated by cyclic voltammetry and time-resolved surface-enhanced resonance Raman spectroelectrochemistry. The temperature, distance, and overpotential dependencies of the electron transfer rates indicate a change of mechanism from a tunneling controlled reaction at long distances (thicker films) to a solvent/protein friction controlled reaction at smaller distances (thinner films).  相似文献   

16.
报道了硫醇-磷脂混合双层膜的循环伏安和电化学交流阻抗行为研究,并用电化学方法考察了蜂毒素与其相互作用,实验中通过冷冻表面沾有磷脂溶液的硫醇单层膜制备混合双层膜,研究表明双层膜在电极表面形成致密的绝缘层,阻碍了电极表面的电子传递,在双层膜体系上引入的蜂毒素可在膜表面上形成孔洞,破坏膜的绝缘性,降低膜电阻,增加膜电容,使带负电的探针Fe(CN)6^3-的氧化还原反应速度加快。  相似文献   

17.
The electrochemical behavior of the gold electrode modified by hybrid bilayer membranes in different concentrations of Fe(CN)63?/Fe(CN)64? was investigated by electrochemical impedance spectroscopy and cyclic voltammetry technology. The electron transfer between gold and the redox species separated by the hybrid bilayers assembly was completed by an electron tunneling process. A detailed equivalent circuit for electron transport across the HBMs is proposed. It was found that the apparent effective thickness of the hybrid bilayer membranes was lower than that of the sum of the chain length of octadecanethiol and phospholipid so some possible collapsed sites might exist at the hybrid bilayer membranes.  相似文献   

18.
Electrochemical impendence spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed to investigate the barrier properties and electron transfer of derivatized thiol self-assembled monolayers (SAMs) on gold in the presence of surfactants. The thiol derivatives used included 2-mercaptoethanesulfonic acid (MES), 2-mercaptoacetic acid (MAA), and N-acetyl-L-cysteine (NAC). A simple equivalent circuit was derived to fit the impedance spectra very well. The negative redox probe [Fe(CN)6](3-/4-) was selected to indicate the electron-transfer efficiency on the interface of the studied electrodes. It was found that by changing the surface structure of SAMs, different surfactants could regulate the barrier properties and electron-transfer efficiency in different ways. A positively charged surfactant lowered the electrostatic repulsion between the negative redox probe and negatively charged surface groups of a monolayer, while enhancing the reversibility of electron transfer by virtue of increasing the redox probe concentration within the electric double-layer region. A neutral surfactant showed no significant effect, while a negative surfactant hindered the access and reaction of redox probe by electrostatic repulsion of same-sign charges.  相似文献   

19.
自组装膜修饰悬汞电极的制备及电化学特性   总被引:1,自引:1,他引:0  
电子跨膜传递一直是生物能学的中心问题 ,长期以来生物学家和化学家一直为能在分子水平上研究生物膜上电子传递过程的模型体系而不懈努力.提出的模型体系有平板双分子层膜(plannerbilayerlipidmembrane,BLM)[1]、泡囊[2]、和固体支撑双分子层膜(solidsupportedbilayerlipidmembrane ,S BLM)[3]等 ,BLM膜与实际生物膜最为相似 ,但极不稳定 ;S BLM膜稳定性好 ,但基底不平 ,缺陷大 ,研究电子跨膜传递困难.而80年代初 ,自组装(Self Asse…  相似文献   

20.
荧光性自组装双层膜的制备及其性能研究   总被引:6,自引:1,他引:5  
借助Au-S化学键的作用,在金基底上组装DL-半胱氨酸,利用DL-半胱氨酸与1-萘胺乙酸(NAA)的静电吸引作用在金表面间接组装荧光试剂NAA,从而构建了双层自组装膜NAA/Cys/Au.该自组装膜有较强的荧光信号,能被Cu2+猝灭,并具有较好的可逆再生性能,可用于超痕量铜离子的界面荧光测定,对Cu2+的检出下限为7.87×10-11mol/L.同时采用电化学、荧光光谱及电子能谱等方法表征自组装膜的结构,并采用电化学阻抗谱技术和循环伏安法研究自组装膜在K3[Fe(CN)6]/K4[Fe(CN)6]溶液中的电化学行为研究.结果表明,金表面组装的单层膜具有良好的“针孔”效应,组装上荧光试剂之后形成的无“针孔”缺陷的自组装双层膜对溶液与基底间的界面电子转移有强烈的阻碍作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号