首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用透射光栅和软x光条纹相机测量了铜激光等离子体软x光发射的时间分辨光谱。通过比较时间分辨谱和时间积分光谱,从实验上考查了条纹相机在软x光区域的响应特性。文中也给出了激光等离子体软x光不同谱带及波长发射的时间过程。  相似文献   

2.
程元丽  王骐 《物理》2003,32(12):804-809
毛细管放电Z箍缩等离子体软X射线激光器近几年发展非常迅速,已经获得了在46.9nm的波长上近毫焦量级的激光输出,重复频率达到了4Hz.利用这种软X射线激光在等离子诊断、物质烧熔等方面已开展了初步的应用实验研究.文章介绍了毛细管放电泵浦的两种物理机制,阐述了类氖氩离子2p^53p^1S0-2p^53s^1P1能级间粒子数反转的形成及毛细管放电等离子体柱的演变过程.深入理解这些物理过程,对发展毛细管放电软X射线激光将起到积极作用。  相似文献   

3.
We demonstrate the operation of a gain-saturated table-top soft x-ray laser at 100?Hz repetition rate. The laser generates an average power of 0.15?mW at λ=18.9 nm, the highest laser power reported to date from a sub-20-nm wavelength compact source. Picosecond laser pulses of 1.5?μJ energy were produced at λ=18.9 nm by amplification in a Mo plasma created by tailoring the temporal intensity profile of single pump pulses with 1?J energy produced by a diode-pumped chirped pulse amplification Yb:YAG laser. Lasing was also obtained in the 13.9?nm line of Ni-like Ag. These results increase by an order of magnitude the repetition rate of plasma-based soft x-ray lasers opening the path to milliwatt average power table-top lasers at sub-20?nm wavelengths.  相似文献   

4.
A sequence of high resolution shadowgrams that map the evolution of the plasma of a 380 μm diameter microcapillary discharge was obtained using a very compact 46.9 nm laser. These images are the first plasma diagnostics data obtained using a table-top soft X-ray laser  相似文献   

5.
We propose a plasma channel scheme to obtain an improved table-top laser driven fusion neutron yield as a result of explosions of large deuterium clusters irradiated by an intense laser pulse. A cylindrical plasma channel is created by two moderate intensity laser prepulses at the edge of a deuterium cluster jet along which an intense main laser pulse propagates several nanoseconds later. With the aid of this plasma channel, the main laser pulse will be allowed to deposit its energy into the central region of the deuterium gas jet where the cluster sizes are larger and the atomic density is higher. The plasma channel formation and its impact on the deuterium ion energy spectrum and the consequent fusion neutron yield have been investigated. The calculated results show that a remarkable increase of the table-top laser driven fusion neutron yield would be expected.  相似文献   

6.
A pulsed gas jet of large size noble gas atomic clusters as targets for high intensity femtosecond laser pulses is reported. The jet can work for gas stagnation pressure in excess of 40 atmospheres and with a repetition rate of 10 Hz to fit 10 Hz table-top terrawatt femtosecond Ti∶Sapphire laser. The scaling law indicates that the monomer argon clusters produced in the jet can be as large as 22,000 atoms/cluster at room temperature. Preliminary experiments for argon ionic kinetic energy spectrum indicated that the argon clusters are produced in the jet.  相似文献   

7.
1 Introduction  Muchprogresshasbeenmadeinunderstandingtheintenselaserinteractionswithmatterinrecentyears.Theultrashortlaserpulsesbasedonchirpedpulseamplification(CPA)haveapeakintensityof1014~1019Wcm-2andpulsedurationshorterthan100femtoseconds[1,2].Th…  相似文献   

8.
We report gain-saturated operation of a 13.2 nm table-top laser in Ni-like Cd at a 5 Hz repetition rate. A gain-length product G x L = 17.6 was obtained by heating a precreated plasma with 8 ps duration Ti:sapphire laser pulses with an energy of only 1 J impinging at a grazing angle of 23 degrees. With an average power of approximately 1 muW [corrected] this laser is an attractive coherent source for at-wavelength metrology of extreme UV lithography optics and other applications.  相似文献   

9.
Ultra-fast x-ray-dynamic experimental subsystem is a facility which can provide femtosecond hard x-ray sources using a femtosecond laser interacting with plasmas. By utilizing these ultra-fast x-rays as a probe, combined with a naturally synchronized driver laser as a pump, we can perform dynamic studies on samples with a femtosecond time resolution.This subsystem with a four-dimensional ultra-high spatiotemporal resolution is a powerful tool for studies of the process of photosynthesis, Auger electron effects, lattice vibrations, etc. Compared with conventional x-ray sources based on accelerators, this table-top laser-driven x-ray source has significant advantages in terms of the source size, pulse duration,brightness, flexibility, and economy. It is an effective supplement to the synchrotron light source in the ultrafast detection regime.  相似文献   

10.
The neon soft X-ray (SXR) emission characteristics of a Fast Miniature Plasma Focus (FMPF-3) device have been investigated. The FMPF-3 device used for our experiment is of sub-kilojoule energy capacity, which is an order of magnitude lesser than the other well established plasma focus devices. The influence of different geometrical parameters of the anode and the pressure of the filling gas on the SXR emission was investigated to optimize the neon SXR yield and thereby make it a potential source for X-ray lithography. The SXR signal, solely from the desired, characteristic spectral range (900–1600) eV was selectively extracted and acquired using appropriate X-ray absorption filters on diode X-ray spectrometer. It was found that the neon SXR emission from 17 mm long cylindrical anode, which produced best neutron yields, was rather poor, in a very narrow pressure range and that too at low operating pressure. With decrease in the length of cylindrical anode, the optimum operating pressure shifts to higher pressure side, the working pressure range widens and the SXR yield also increases until the anode length is reduced to 12 mm, after which, the SXR yield and working pressure range start to degrade. The highest neon SXR yield of 1.1 J/shot, corresponding to a wall plug efficiency of 0.57%, was obtained for 12 mm long cylindrical anode. The tapered anodes with different length were also designed and tested, but they did not show any significant improvement in neon SXR yield.  相似文献   

11.
The 1.73 μm XeI laser has been operated in a fully continuous mode using a table-top electron beam pumped laser setup. A 12 keV electron beam sent through a 300 nm thick silicon nitride membrane into a laser gas mixture of typically 600 mbar gas pressure was used for pumping. A low loss cavity was installed, resulting in a very low pumping power of 37 mW to reach laser threshold. The geometrical conditions for the laser setup such as the shape of the beam pumped volume and its overlap with the optical mode volume are discussed. The laser scheme has been clearly identified as a recombination laser scheme by operating the laser in pulsed mode and observing the time structure of the laser pulse.  相似文献   

12.
Intrinsic molecular fluorescence from porphyrin molecules on Au(100) has been realized by using a nanoscale multimonolayer decoupling approach with nanoprobe excitation in the tunneling regime. The molecular origin of luminescence is established by the observed well-defined vibrationally resolved fluorescence spectra. The molecules fluoresce at low "turn-on" voltages for both bias polarities, suggesting an excitation mechanism via hot electron injection from either tip or substrate. The excited molecules decay radiatively through Franck-Condon pi(*)-pi transitions.  相似文献   

13.
This paper investigates the emission characteristics of a high-performance low-energy (3-kJ) repetitive dense plasma focus device, NX2, operated at up to 1-Hz repetition rate to develop it as an intense source of soft X-rays (SXR) for microlithography and micromachining. Various SXR yield optimization studies with argon and neon as filling gases were performed under different operating conditions (charging voltage, filling pressure, anode length, and insulator sleeve length). The SXR yield was computed using signals obtained from a PIN diode SXR spectrometer with appropriate filters. When operated in neon, the average optimum SXR (/spl lambda//spl sim/1 nm) yield in 4/spl pi/ steradians was found to be up to 140 J/shot, which corresponded to a wall plug efficiency of 5.6%. Operation in argon showed that optimized SXR (/spl lambda//spl sim/0.4 nm) yield was up to 1.3 J/shot. While operating with neon under optimized conditions with a water-cooled anode in repetitive mode, the NX2 device was used as a SXR source to imprint a test lithograph on a highly sensitive chemically-amplified resist SU-8. Test structures showing the effect of a stepper with aspect ratio 3:1 on 10-/spl mu/m-thick SU-8 resist film were obtained.  相似文献   

14.
We theoretically show that moderate interaction between electrons confined to move in a plane and localized magnetic moments leads to formation of a noncoplanar magnetic state. The state is similar to the Skyrmion crystal recently observed in cubic systems with the Dzyaloshinskii-Moriya interaction; however, it does not require spin-orbit interaction. The noncoplanar magnetism is accompanied by the ground-state electrical and spin currents, generated via the real-space Berry phase mechanism. We examine the stability of the state with respect to lattice discreteness effects and the magnitude of magnetic exchange interaction. The state can be realized in a number of transition metal and magnetic semiconductor systems.  相似文献   

15.
姜海  王文涛  冯珂  顾铮先  李儒新 《强激光与粒子束》2022,34(10):104009-1-104009-7
激光等离子体加速器能够在cm尺度内产生GeV量级的高品质电子束,为研制台式化自由电子激光提供驱动源。但是受限于激光等离子体加速中的难点和现有技术发展,电子束的品质难以达到自由电子激光的需求,尤其在稳定性、发散角和能散等方面,阻碍了台式化自由电子激光的研制。介绍了基于激光等离子体加速器的自由电子激光的最新进展,整理了目前高增益自由电子激光实验过程中存在的主要挑战和对应的解决方案与实验进展,并展望未来的发展方向。最近的研究结果证明,通过控制和优化激光等离子体加速器的注入和加速过程产生的高品质电子束可以在指数增益区域实现自发辐射放大,产生高增益的辐射,这也推动基于激光等离子体加速器的自由电子激光研究进入了一个新的阶段。  相似文献   

16.
We report the near-field imaging characterization of a 10 Hz Ni-like 18.9 nm molybdenum soft-x-ray laser pumped in a grazing incidence pumping (GRIP) geometry with a table-top laser driver. We investigate the effect of varying the GRIP angle on the spatial behavior of the soft-x-ray laser source. After multiparameter optimization, we were able to find conditions to generate routinely a high-repetition-rate soft-x-ray laser with an energy level of up to 3 microJ/pulse and to 6x10(17) photons/s/mm2/mrad2/(0.1% bandwidth) average brightness and 1x10(28) photons/s/mm2/mrad2/(0.1% bandwidth) peak brightness.  相似文献   

17.
The influence of the electron spin degree of freedom on nonperturbative electron–positron pair production by high-energy proton impact on an intense laser field of circular polarization is analyzed. Predictions from the Dirac and Klein–Gordon theories are compared and a spin-resolved calculation is performed. We show that the various spin configurations possess very different production probabilities and discuss the transfer of helicity in this highly nonlinear process. Our predictions could be tested by combining the few-TeV proton beam at CERN-LHC with an intense laser pulse from a table-top petawatt laser source.  相似文献   

18.
We present the first real-space analysis on a single-particle level of the dipolar chains and branched clusters self-assembling in magnetic fluids in zero field. Spatial correlations and chain-length distributions directly obtained from tracked particle positions in vitrified films of synthetic magnetic (Fe3O4) dispersions provide a quantitative test for simulations and theory of dipolar fluids. A pertinent example is the cluster-size distribution that can be analyzed with a one-dimensional aggregation model to yield a dipolar attraction energy that agrees well with the dipole moment found from independent magnetization measurements.  相似文献   

19.
Defects provide important insight into the complex electronic and magnetic structure of heavy-fermion materials by inducing qualitatively different real-space perturbations in the electronic and magnetic correlations of the system. These perturbations possess direct experimental signatures in the local density of states, such as an impurity bound state, and the nonlocal spin susceptibility. Moreover, highly nonlinear quantum interference between defect-induced perturbations can drive the system through a first-order phase transition to a novel inhomogeneous ground state.  相似文献   

20.
There are two physical phenomena in a strong laser intensity. One is the high-order harmonic emission; the other is x-ray emission from optical-field ionized plasmas. The experiment of conversion from high-order harmonics to x-ray emissions was given with a 105fs Ti:sapphire laser by adjusting laser intensities. The ingredient in plasma was investigated by the numerical simulations.Our experimental results suggested that the free electrons have detrimental effects on harmonic generation but are favourable for x-ray emission from optical-field ionized plasmas. If we want to obtain more intense harmonic signals as a coherent light source in the soft x-ray region, we must avoid the production of free electrons in plasmas. At the same time, if we want to observe x-rays for the development of high-repetition-rate table-top soft x-ray lasers, we should strip all atoms in the plasmas to a necessary ionized stage by the optical-field-ionization in the field of a high-intensity laser pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号