首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qin HL  Panek JS 《Organic letters》2008,10(12):2477-2479
An enantioselective synthesis of the Hsp90 inhibitor geldanamycin was achieved in 20 linear steps and 2.0% overall yield from 2-methoxyhydroquinone. The synthesis is highlighted by a regio- and stereoselective hydroboration reaction; a Sc(OTf)(3)/Et(3)SiH-mediated pyran ring-opening reaction; an enantioselective crotylation to simultaneously install the C8-C9 (E) -trisubstituted olefin, the C10 and C11 stereocenters; a chelation-controlled asymmetric metallated acetylide addition; and an intramolecular copper(I)-mediated aryl amidation reaction to close the 19-membered macrolactam.  相似文献   

2.
Geldanamycin, a polyketide natural product, is of significant interest for development of new anticancer drugs that target the protein chaperone Hsp90. While the chemically reactive groups of geldanamycin have been exploited to make a number of synthetic analogs, including 17-allylamino-17-demethoxy geldanamycin (17-AAG), currently in clinical evaluation, the "inert" groups of the molecule remain unexplored for structure-activity relationships. We have used genetic engineering of the geldanamycin polyketide synthase (GdmPKS) gene cluster in Streptomyces hygroscopicus to modify geldanamycin at such positions. Substitutions of acyltransferase domains were made in six of the seven GdmPKS modules. Four of these led to production of 2-desmethyl, 6-desmethoxy, 8-desmethyl, and 14-desmethyl derivatives, including one analog with a four-fold enhanced affinity for Hsp90. The genetic tools developed for geldanamycin gene manipulation will be useful for engineering additional analogs that aid the development of this chemotherapeutic agent.  相似文献   

3.
《中国化学快报》2023,34(2):107529
Heat shock protein 90 (Hsp90) is an appealing anticancer drug target that provoked a tremendous wave of investigations. Geldanamycin (GA) is the first identified Hsp90 inhibitor that exhibited potent anti-cancer activity, but the off-target toxicity associated with the benzoquinone moiety hampered its clinical application. Until now, structure optimization of GA is still in need to fully exploit the therapeutic value of Hsp90. Due to the structural complexity and synthetic challenge of this compound family, conventional optimization is bound to be costly but high efficiency is expected to be reachable by combining the art of rational design and total synthesis. Described in this paper is our first attempt at this approach aiming at rational modification of the C6-position of GA. The binding affinities towards Hsp90 of compound 1 (C6-ethyl) and 2 (C6-methyl) were designed and predicted by using Discovery Studio. These compounds were synthesized and further subjected to a thorough in vitro biological evaluation. We found that compounds 1 and 2 bind to Hsp90 protein with the IC50 of 34.26 nmol/L and 163.7 nmol/L, respectively. Both compounds showed broad-spectrum antitumor effects. Replacing by ethyl, compound 1 exhibited more potent bioactivity than positive control GA, such as in G2/M cell cycle arrest, cell apoptosis and client proteins degradations. The results firstly indicated that the docking study is able to provide a precise prediction of Hsp90 affinities of GA analogues, and the C6 substituent of GA is not erasable without affecting its biological activity.  相似文献   

4.
Breast cancer is one of the major impediments affecting women globally. The ATP-dependant heat shock protein 90 (Hsp90) forms the central component of molecular chaperone machinery that predominantly governs the folding of newly synthesized peptides and their conformational maturation. It regulates the stability and function of numerous client proteins that are frequently upregulated and/or mutated in cancer cells, therefore, making Hsp90 inhibition a promising therapeutic strategy for the development of new efficacious drugs to treat breast cancer. In the present in silico investigation, a structure-based pharmacophore model was generated with hydrogen bond donor, hydrogen bond acceptor and hydrophobic features complementary to crucial residues Ala55, Lys58, Asp93, Ile96, Met98 and Thr184 directed at inhibiting the ATP-binding activity of Hsp90. Subsequently, the phytochemical dataset of 3210 natural compounds was screened to retrieve the prospective inhibitors after rigorous validation of the model pharmacophore. The retrieved 135 phytocompounds were further filtered by drug-likeness parameters including Lipinski’s rule of five and ADMET properties, then investigated via molecular docking-based scoring. Molecular interactions were assessed using Genetic Optimisation for Ligand Docking program for 95 drug-like natural compounds against Hsp90 along with two clinical drugs as reference compounds – Geldanamycin and Radicicol. Docking studies revealed three phytochemicals are better than the investigated clinical drugs. The reference and hit compounds with dock scores of 48.27 (Geldanamycin), 40.90 (Radicicol), 73.04 (Hit1), 72.92 (Hit2) and 68.12 (Hit3) were further validated for their binding stability through molecular dynamics simulations. We propose that the non-macrocyclic scaffolds of three identified phytochemicals might aid in the development of novel therapeutic candidates against Hsp90-driven cancers.  相似文献   

5.
Abstract New classes of synthetic chlorin and bacteriochlorin macrocycles are characterized by narrow spectral widths, tunable absorption and fluorescence features across the red and near-infrared (NIR) regions, tunable excited-state lifetimes (<1 to >10 ns) and chemical stability. Such properties make dyad constructs based on synthetic chlorin and bacteriochlorin units intriguing candidates for the development of NIR molecular imaging probes. In this study, two such dyads (FbC-FbB and ZnC-FbB) were investigated. The dyads contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. In both constructs, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of approximately (5 ps)(-1) and a yield of >99%. Thus, each dyad effectively behaves as a single chromophore with an exceptionally large Stokes shift (85 nm for FbC-FbB and 110 nm for ZnC-FbB) between the red-region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (lambda(f) = 760 nm, Phi(f) = 0.19, tau approximately 5.5 ns in toluene). The long-wavelength transitions (absorption, emission) of each constituent of each dyad exhibit narrow (相似文献   

6.
A series of ansa-quinones has been prepared by chemical synthesis, and evaluated by biological techniques. Thus, 19-membered ansa-lactams, simplified analogues of the naturally occurring Hsp90 molecular chaperone inhibitor geldanamycin, were obtained by concise routes, the key steps being the combination of a ring-closing metathesis to give a 17-membered ring followed by Claisen rearrangement to effect ring expansion. The methodology was also used to prepare an "unnatural" 18-membered ring analogue. In ATPase enzyme assays, the synthetic ansa-quinones were weak inhibitors of Hsp90.  相似文献   

7.
Fluorescent probes have been used extensively to monitor biomolecules and biologically relevant species in vitro and in vivo. A new trend in this area that has been stimulated by the desire to obtain more detailed information about the biological effects of analytes is the change from live cell to whole animal fluorescent imaging. Zebrafish has received great attention for live vertebrate imaging due to several noticeable advantages. In this tutorial review, recent advances in live zebrafish imaging using fluorescent probes, such as fluorescent proteins, synthetic fluorescent dyes and quantum dots, are highlighted.  相似文献   

8.
9.
Cell death plays a central role in normal physiology and in disease. Common to apoptotic and necrotic cell death is the eventual loss of plasma membrane integrity. We have produced a small organoarsenical compound, 4-(N-(S-glutathionylacetyl)amino)phenylarsonous acid, that rapidly accumulates in the cytosol of dying cells coincident with loss of plasma membrane integrity. The compound is retained in the cytosol predominantly by covalent reaction with the 90 kDa heat shock protein (Hsp90), the most abundant molecular chaperone of the eukaryotic cytoplasm. The organoarsenical was tagged with either optical or radioisotope reporting groups to image cell death in cultured cells and in murine tumors ex vivo and in situ. Tumor cell death in mice was noninvasively imaged by SPECT/CT using an (111)In-tagged compound. This versatile compound should enable the imaging of cell death in most experimental settings.  相似文献   

10.
11.
The use of a molecular rotor (1,1-dicyano-4-(4'-dimethylaminophenyl)-1,3-butadiene) as a fluorescent probe was proved to be of great interest for the study of polymers. First, the rotor can detect the critical time of the glass effect in the bulk polymerization of MMA into PMMA due to viscosity change, this will allow a better control of the process and is complementary to the information issued from the use of the fluorescent pyrene probe which is sensitive to the gel effect. Second, the cinnamylidene rotor was able to detect the formation of hydrophobic microdomains for cationic amphiphilic polymers in their aggregation modes when they were solubilized in water, both polarity and viscosity changes are playing a role. The possibility of incorporation of various molecular fluorescent rotors in polymers beads was also studied.  相似文献   

12.
Near-infrared (NIR) fluorescence imaging has improved imaging depth relative to conventional fluorescence imaging in the visible region, demonstrating great potential in both fundamental biomedical research and clinical practice. To improve the detection specificity, NIR fluorescence imaging probes have been under extensive development. This review summarizes the particular application of optical imaging probes with the NIR-I window (700–900 nm) or the NIR-II window (1000–1700 nm) emission for diagnosis of nephron-urological diseases. These molecular probes have enabled contrast-enhanced imaging of anatomical structures and physiological function as well as molecular imaging and early diagnosis of acute kidney injury, iatrogenic ureteral injury and bladder cancer. The design strategies of molecular probes are specifically elaborated along with representative imaging applications. The potential challenges and perspectives in this field are also discussed.

Near-infrared fluorescent molecular probes with improved imaging depth and optimized biodistribution have been reviewed, showing great potential for diagnosis of nephro-urological diseases.  相似文献   

13.
The unknown effects of a receptor's environment on a ligand's conformation presents a difficult challenge in predicting feasible bioactive conformations, particularly if the receptor is ill-defined. The primary hypothesis of this work is that a structure's conformational ensemble in solution presents viable candidates for protein binding. The experimental solution profile can be achieved with the NAMFIS (NMR analysis of molecular flexibility in solution) method, which deconvolutes the average NMR spectrum of small flexible molecules into individual contributing conformations with varying populations. Geldanamycin and radicicol are structurally different macrocycles determined by X-ray crystallography to bind to a common site on the cellular chaperone heat shock protein 90 (Hsp90). Without benefit of a receptor structure, NAMFIS has identified the bioactive conformers of geldanamycin and radicicol in CDCl3 solution with populations of 4% and 21%, respectively. Conversely, docking the set of NAMFIS conformers into the unliganded proteins with GLIDE followed by MM-GBSA scoring reproduces the experimental crystallographic binding poses.  相似文献   

14.
Peptide-based probes play prominent roles in biomedical research due to their promising properties such as high biocompatibility, fast excretion, favorable pharmacokinetics as well as easy and robust preparation. Considering the translation of imaging probes into clinical applications, peptide-based probes remain to be the most desirable and optimal candidates.  相似文献   

15.
Hyperpolarized isotope-labeled agents have significantly advanced nuclear magnetic resonance spectroscopy and imaging (MRS/MRI) of physicochemical activities at molecular levels. An emerging advance in this area is exciting developments of 15N-labeled hyperpolarized MR agents to enable acquisition of highly valuable information that was previously inaccessible and expand the applications of MRS/MRI beyond commonly studied 13C nuclei. This review will present recent developments of these hyperpolarized 15N-labeled molecular imaging probes, ranging from endogenous and drug molecules, and chemical sensors, to various 15N-tagged biomolecules. Through these examples, this review will provide insights into the target selection and probe design rationale and inherent challenges of HP imaging in hopes of facilitating future developments of 15N-based biomedical imaging agents and their applications.

This review presents a current account of hyperpolarized 15N-labeled molecular imaging probes, as well as insights on their advantages and challenges to advance future development of 15N-based probes and their applications in MRS/MRI.  相似文献   

16.
Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.  相似文献   

17.
18.
New M(II) bis(thiosemicarbazonato) complexes (M = Ni(II), Cu(II) and Zn(II)) featuring allyl groups at the exocyclic nitrogens have been synthesised. The complexes were characterised in solution by spectroscopic methods and their solid state structures determined by single crystal X-ray diffraction using synchrotron radiation. The Zn(II) complex was found to be intrinsically fluorescent and soluble in biocompatible media. The uptake of this Zn(II) complex in HeLa, MCF-7 and IGROV cancer cells was monitored by fluorescence microscopies (epi- and confocal fluorescence imaging). The radiolabelling to (64)Cu(II) bis(thiosemicarbazonato) complex was performed cleanly by transmetallation from the corresponding Zn(II) species using (64)Cu(OAc)(2).  相似文献   

19.
The development of a straightforward synthesis of 4-amino-6-benzyl-6H-pyrrolo[3,4-d]pyrimidine and 7-amino-2-benzyl-2H-pyrazolo[4,3-d]pyrimidine derivatives allowed for the preparation of a small family of potential Hsp90 inhibitors. Some of the newly synthesized compounds showed Hsp90 inhibitory activity in preliminary biological assays.  相似文献   

20.
A series of benzo‐macrolactones has been prepared by chemical synthesis, and evaluated as inhibitors of heat shock protein 90 (Hsp90), an emerging attractive target for novel cancer therapeutic agents. A new synthesis of these resorcylic acid macrolactone analogues of the natural product radicicol is described in which the key steps are the acylation and ring opening of a homophthalic anhydride to give an isocoumarin, followed by a ring‐closing metathesis to form the macrocycle. The methodology has been extended to a novel series of macrolactones incorporating a 1,2,3‐triazole ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号