首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of H(3)L(1), the Schiff base condensate of tris(2-aminoethyl)amine with three equivalents of 5-methyl-1H-pyrazole-3-carboxaldehyde, with manganese(II)perchlorate or iron(II)tetrafluoroborate results in the isolation of [MH(3)L(1)]X(2) (M = Mn and X = ClO(4) and M = Fe and X = BF(4)). These complexes are high spin d(5) and d(6), respectively, as inferred from the long M-N bond distances obtained by single crystal X-ray diffraction for both and variable temperature magnetic susceptibility and M?ssbauer spectroscopy for the iron complex. Aerobic treatment of a solution of [CoH(3)L(1)](2+) with three equivalents of potassium hydroxide produced [CoL(1)]. Homonuclear pseudo-dimers were prepared by the aerobic reaction of [FeH(3)L(1)](BF(4))(2) with 1.5 equivalents of potassium hydroxide to give {[FeH(1.5)L(1)](BF(4))}(2) or by the metathesis reaction of [FeH(2)L(1)][FeHL(1)](ClO(4))(2) with sodium hexafluorophosphate to give [FeH(3)L(1)][FeL(1)](PF(6))(2). The complexes were characterized by EA, IR, ESI-MS, variable temperature single crystal x-ray diffraction and M?ssbauer spectroscopy. The iron(III) atom is low spin while the iron(II) atom is spin crossover. Heteronuclear pseudo-dimers were prepared by the 1:1 reaction of [FeH(3)L(1)](BF(4))(2) or [MnH(3)L(1)](ClO(4))(2) with [CoL(1)]. [MH(3)L(1)][CoL(1)](X)(2) (M = Fe and X = BF(4) or M = Mn and X = ClO(4)), were characterized by IR, EA, variable temperature single crystal X-ray diffraction and M?ssbauer spectroscopy in the iron case. The data support a spin crossover and high spin assignment for the iron(II) and manganese(II), respectively. DFT calculations demonstrate that the spin state of the iron(II) atom in {[FeH(3)L(1)][FeL(1)]}(2+) changes from high spin to low spin as the iron(II)-iron(III) distance decreases. This is supported by experimental results and is a result of hydrogen bonding interactions which cause a significant compression of the M(II)-N(pyrazole) bond distances.  相似文献   

2.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

3.
A new family of spin crossover complexes, [Fe(II)H(3)L(Me)](NO(3))(2).1.5H(2)O (1), [Fe(III)L(Me)].3.5H(2)O (2), [Fe(II)H(3)L(Me)][Fe(II)L(Me)]NO(3) (3), and [Fe(II)H(3)L(Me)][Fe(III)L(Me)](NO(3))(2) (4), has been synthesized and characterized, where H(3)L(Me) denotes a hexadentate N(6) tripod ligand containing three imidazole groups, tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine. It was found that the spin and oxidation states of the iron complexes with this tripod ligand are tuned by the degree of deprotonation of the imidazole groups and by the 2-methyl imidazole substituent. Magnetic susceptibility and M?ssbauer studies revealed that 1 is an HS-Fe(II) complex, 2 exhibits a spin equilibrium between HS and LS-Fe(III), 3 exhibits a two-step spin transition, where the component [Fe(II)L(Me)](-) with the deprotonated ligand participates in the spin transition process in the higher temperature range and the component [Fe(II)H(3)L(Me)](2+) with the neutral ligand participates in the spin transition process in the lower temperature range, and 4 exhibits spin transition of both the Fe(II) and Fe(III) sites. The crystal structure of 3 consists of homochiral extended 2D puckered sheets, in which the capped tripodlike components [Fe(II)H(3)L(Me)](2+) and [Fe(II)L(Me)](-) are alternately arrayed in an up-and-down mode and are linked by the imidazole-imidazolate hydrogen bonds. Furthermore, the adjacent 2D homochiral sheets are stacked in the crystal lattice yielding a conglomerate as confirmed by the enantiomeric circular dichorism spectra. Compounds 3 and 4 showed the LIESST (light induced excited spin state trapping) and reverse-LIESST effects upon irradiation with green and red light, respectively.  相似文献   

4.
A series of cyanide bridged Fe-Co molecular squares, [Co(2)Fe(2)(CN)(6)(tp*)(2)(dtbbpy)(4)](PF(6))(2)·2MeOH (1), [Co(2)Fe(2)(CN)(6)(tp*)(2)(bpy)(4)](PF(6))(2)·2MeOH (2), and [Co(2)Fe(2)(CN)(6)(tp)(2)(dtbbpy)(4)](PF(6))(2)·4H(2)O (3) (tp = hydrotris(pyrazol-1-yl)borate, tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate, bpy =2,2'-bipyridine, dtbbpy =4,4'-di-tert-butyl-2,2'-bipyridine), were prepared by the reactions of [Fe(CN)(3)(L)](-) (L = tp or tp*) with Co(2+) and bidentate ligands (bpy or dtbbpy) in MeOH. In the molecular squares, Fe and Co ions are alternately bridged by cyanide ions, forming macrocyclic tetranuclear cores. Variable temperature X-ray structural analyses and magnetic susceptibility measurements confirmed that 1 exhibits two-step charge-transfer induced spin transitions (CTIST) centered at T(1/2) = 275 and 310 K in the solid state. The Fe and Co ions in 1 are the low-spin (LS) Fe(III) and high-spin (HS) Co(II) ions, described here in the high-temperature (HT) phase ([Fe(III)(LS2)Co(II)(HS2)]) at 330 K, while a low-temperature (LT) phase ([Fe(II)(LS2)Co(III)(LS2)]) with LS Fe(II) and Co(III) ions was dominant below 260 K. X-ray structural analysis revealed that in the intermediate (IM) phase at 298 K 1 exhibits positional ordering of [Fe(III)(LS2)Co(II)(HS2)] and [Fe(II)(LS2)Co(III)(LS2)] species with the 2:2 ratio. In photomagnetic experiments on 1, light-induced CTIST from the LT to the HT phase was observed by excitation of Fe(II) → Co(III) intervalence charge transfer (IVCT) band at 5 K and the trapped HT phase thermally relaxed to the LT phase in a two-step fashion. On the other hand, 2 and 3 are in the HT and LT phases, respectively, throughout the entire temperature range measured, and no CTIST was observed. UV-vis-NIR absorption spectral measurements and cyclic voltammetry in solution revealed that the different electronic states in 1-3 are ascribable to the destabilization of iron and cobalt ion d-orbitals by the introduction of methyl and tert-butyl groups to the ligands tp and bpy, respectively. Temperature dependence of UV-vis-NIR spectra confirmed that 1 exhibited a one-step CTIST in butyronitrile, of which T(1/2) varied from 227 to 280 K upon the addition of trifluoroacetic acid.  相似文献   

5.
Reaction of iron salts with three tripodal imidazole ligands, H(3)(1), H(3)(2), H(3)(3), formed from the condensation of tris(2-aminoethyl)amine (tren) with 3 equiv of an imidazole carboxaldehyde yielded eight new cationic iron(III) and iron(II), [FeH(3)L](3+or2+), and neutral iron(III), FeL, complexes. All complexes were characterized by EA(CHN), IR, UV, M?ssbauer, mass spectral techniques and cyclic voltammetry. Structures of three of the complexes, Fe(2).3H(2)O (C(18)H(27)FeN(10)O(3), a = b = c = 20.2707(5), cubic, I3d, Z = 16), Fe(3).4.5H(2)O (C(18)H(30)FeN(10)O(4.5), a = 20.9986(10), b = 11.7098(5), c = 19.9405(9), beta = 109.141(1), monoclinic, P2(1)/c), Z = 8), and [FeH(3)(3)](ClO(4))(2).H(2)O (C(18)H(26)Cl(2)FeN(10)O(9), a = 9.4848(4), b = 23.2354(9), c = 12.2048(5), beta = 111.147(1) degrees, monoclinic, P2(1)/n, Z = 4) were determined at 100 K. The structures are similar to one another and feature an octahedral iron with facial coordination of imidazoles and imine nitrogen atoms. The iron(III) complexes of the deprotonated ligands, Fe(1), Fe(2), and Fe(3), are low-spin while the protonated iron(III) cationic complexes, [FeH(3)(1)](ClO(4))(3) and [FeH(3)(2)](ClO(4))(3), are high-spin and spin-crossover, respectively. The iron(II) cationic complexes, [FeH(3)(1)]S(4)O(6), [FeH(3)(2)](ClO(4))(2), [FeH(3)(3)](ClO(4))(2), and [FeH(3)(3)][B(C(6)H(5))(4)](2) exhibit spin-crossover behavior. Cyclic voltammetric measurements on the series of complexes show that complete deprotonation of the ligands produces a negative shift in the Fe(III)/Fe(II) reduction potential of 981 mV on average. Deprotonation in air of either cationic iron(II) or iron(III) complexes, [FeH(3)L](3+or2+), yields the neutral iron(III) complex, FeL. The process is reversible for Fe(3), where protonation of Fe(3) yields [FeH(3)(3)](2+).  相似文献   

6.
Reported herein are the synthesis, structural, magnetic and M?ssbauer spectroscopic characterisation of a dinuclear Fe(II) triple helicate complex [Fe(2)(L)(3)](ClO(4))(4).xH(2)O (x = 1-4), 1(H(2)O), where L is a bis-bidentate imidazolimine ligand. Low temperature structural analysis (150 K) and M?ssbauer spectroscopy (4.5 K) are consistent with one of the Fe(II) centres within the helicate being in the low spin (LS) state with the other being in the high-spin (HS) state resulting in a [LS:HS] species. However, M?ssbauer spectroscopy (295 K) and variable temperature magnetic susceptibility measurements (4.5-300 K) reveal that 1(H(2)O) undergoes a reversible single step spin crossover at one Fe(II) centre at higher temperatures resulting in a [HS:HS] species. Indeed, the T(1/2)(SCO) values at this Fe(II) centre also vary as the degree of hydration, x, within 1(H(2)O) changes from 1 to 4 and are centred between ca. 210 K-265 K, respectively. The dehydration/hydration cycle is reversible and the fully hydrated phase of 1(H(2)O) may be recovered on exposure to water vapour. This magnetic behaviour is in contrast to that observed in the related compound [Fe(2)(L)(3)](ClO(4))(4)·2MeCN, 1(MeCN), whereby fully reversible SCO was observed at each Fe(II) centre to give [LS:LS] species at low temperature and [HS:HS] species at higher temperatures. Reasons for this differing behaviour between 1(H(2)O) and 1(MeCN) are discussed.  相似文献   

7.
The electronic structures of complexes of iron containing two S,S'-coordinated benzene-1,2-dithiolate, (L)(2)(-), or 3,5-di-tert-butyl-1,2-benzenedithiolate, (L(Bu))(2)(-), ligands have been elucidated in depth by electronic absorption, infrared, X-band EPR, and Mossbauer spectroscopies. It is conclusively shown that, in contrast to earlier reports, high-valent iron(IV) (d(4), S = 1) is not accessible in this chemistry. Instead, the S,S'-coordinated radical monoanions (L(*))(1)(-) and/or (L(Bu)(*))(1)(-) prevail. Thus, five-coordinate [Fe(L)(2)(PMe(3))] has an electronic structure which is best described as [Fe(III)(L)(L(*))(PMe(3))] where the observed triplet ground state of the molecule is attained via intramolecular, strong antiferromagnetic spin coupling between an intermediate spin ferric ion (S(Fe) = (3)/(2)) and a ligand radical (L(*))(1)(-) (S(rad) = (1)/(2)). The following complexes containing only benzene-1,2-dithiolate(2-) ligands have been synthesized, and their electronic structures have been studied in detail: [NH(C(2)H(5))(3)](2)[Fe(II)(L)(2)] (1), [N(n-Bu)(4)](2)[Fe(III)(2)(L)(4)] (2), [N(n-Bu)(4)](2)[Fe(III)(2)(L(Bu))(4)] (3); [P(CH(3))Ph(3)][Fe(III)(L)(2)(t-Bu-py)] (4) where t-Bu-py is 4-tert-butylpyridine. Complexes containing an Fe(III)(L(*))(L)- or Fe(III)(L(Bu))(L(Bu)(*))- moiety are [N(n-Bu)(4)][Fe(III)(2)(L(Bu))(3)(L(Bu)(*))] (3(ox)()), [Fe(III)(L)(L(*))(t-Bu-py)] (4(ox)()), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))] (7), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))(2)] (8), and [Fe(III)(L(Bu))(L(Bu)(*))(PPr(3))] (9), where Pr represents the n-propyl substituent. Complexes 2, 3(ox)(), 4, [Fe(III)(L)(L(*))(PMe(3))(2)] (6), and 9 have been structurally characterized by X-ray crystallography.  相似文献   

8.
The self-assembly of [Fe(III){B(pz)(4)}(CN)(3)](-) and [Co(II)(bik)(2)(S)(2)](2+) affords the diamagnetic cyanide-bridged [Fe(II)(LS)Co(III)(LS)](2) molecular square which is converted into the corresponding magnetic [Fe(III)(LS)Co(II)(HS)](2) species under light irradiation at relatively low temperatures.  相似文献   

9.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

10.
Three 5,5'-dicarbamate-2,2'-bipyridine ligands (L = L(1)-L(3)) bearing ethyl, isopropyl or tert-butyl terminals, respectively, on the carbamate substituents were synthesized. Reaction of the ligands L with the transition metal ions M = Fe(2+), Cu(2+), Zn(2+) or Ru(2+) gave the complexes ML(n)X(2)·xG (1-12, n = 1-3; X = Cl, NO(3), ClO(4), BF(4), PF(6), ?SO(4); G = Et(2)O, DMSO, CH(3)OH, H(2)O), of which [Fe(L(2))(3)???SO(4)]·8.5H(2)O (2), [Fe(L(1))(3)???(BF(4))(2)]·2CH(3)OH (7), [Fe(L(2))(3)???(Et(2)O)(2)](BF(4))(2)·2CH(3)OH (8), [ZnCl(2)(L(1))][ZnCl(2)(L(1))(DMSO)]·2DMSO (9), [Zn(L(1))(3)???(NO(3))(2)]·2H(2)O (10), [Zn(L(2))(3)???(ClO(4))(Et(2)O)]ClO(4)·Et(2)O·2CH(3)OH·1.5H(2)O (11), and [Cu(L(1))(2)(DMSO)](ClO(4))(2)·2DMSO (12) were elucidated by single-crystal X-ray crystallography. In the complexes ML(n)X(2)·xG the metal ion is coordinated by n = 1, 2 or 3 chelating bipyridine moieties (with other anionic or solvent ligands for n = 1 and 2) depending on the transition metal and reaction conditions. Interestingly, the carbamate functionalities are involved in hydrogen bonding with various guests (anions or solvents), especially in the tris(chelate) complexes which feature the well-organized C(3)-clefts for effective guest inclusion. Moreover, the anion binding behavior of the pre-organized tris(chelate) complexes was investigated in solution by fluorescence titration using the emissive [RuL(3)](2+) moiety as a probe. The results show that fluorescent recognition of anion in solution can be achieved by the Ru(II) complexes which exhibit good selectivities for SO(4)(2-).  相似文献   

11.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

12.
Treating a thf (thf = tetrahydrofuran) suspension of Cd(acac)(2) (acac = acetylacetonate) with 2 equiv of HBF(4).Et(2)O results in the immediate formation of [Cd(2)(thf)(5)](BF(4))(4) (1). Crystallization of this complex from thf/CH(2)Cl(2) yields [Cd(thf)(4)](BF(4))(2) (2), a complex characterized in the solid state by X-ray crystallography. Crystal data: monoclinic, P2(1)/n, a = 7.784(2) ?, b = 10.408(2) ?, c = 14.632(7) ?, beta = 94.64(3) degrees, V = 1181.5(6) ?(3), Z = 2, R = 0.0484. The geometry about the cadmium is octahedral with a square planar arrangement of the thf ligands and a fluorine from each (BF(4))(-) occupying the remaining two octahedral sites. Reactions of [Cd(2)(thf)(5)](BF(4))(4) with either HC(3,5-Me(2)pz)(3) or HC(3-Phpz)(3) yield the dicationic, homoleptic compounds {[HC(3,5-Me(2)pz)(3)](2)Cd}(BF(4))(2) (3) and {[HC(3-Phpz)(3)](2)Cd}(BF(4))(2) (4) (pz = 1-pyrazolyl). The solid state structure of 3 has been determined by X-ray crystallography. Crystal data: rhombohedral, R&thremacr;, a = 12.236(8) ?, c = 22.69(3) ?, V = 2924(4) ?(3), Z = 3, R = 0.0548. The cadmium is bonded to the six nitrogen donor atoms in a trigonally distorted octahedral arrangement. Four monocationic, mixed ligand tris(pyrazolyl)methane-tris(pyrazolyl)borate complexes {[HC(3,5-Me(2)pz)(3)][HB(3,5-Me(2)pz)(3)]Cd}(BF(4)) (5), {[HC(3,5-Me(2)pz)(3)][HB(3-Phpz)(3)]Cd}(BF(4)) (6), {[HC(3-Phpz)(3)][HB(3,5-Me(2)pz)(3)]Cd}(BF(4)) (7), and {[HC(3-Phpz)(3)][HB(3-Phpz)(3)]Cd}(BF(4)) (8) are prepared by appropriate conproportionation reactions of 3or 4 with equimolar amounts of the appropriate homoleptic neutral tris(pyrazolyl)borate complexes [HB(3,5-Me(2)pz)(3)](2)Cd or [HB(3-Phpz)(3)](2)Cd. Solution (113)Cd NMR studies on complexes 3-8 demonstrate that the chemical shifts of the new cationic, tris(pyrazolyl)methane complexes are very similar to the neutral tris(pyrazolyl)borate complexes that contain similar substitution of the pyrazolyl rings.  相似文献   

13.
The pyrazolate-based ditopic ligand HL forms a strongly hydrogen-bonded corner complex dimer [Fe(II)(HL)(2)](2)(BF(4))(4) (1) with a [2 × 2] gridlike arrangement of four ligand strands. The two empty vertices can then be filled with {Ag(2)}(2+) dumbbells, yielding the unprecedented diferric complex [L(4)Fe(III)(2)(Ag(I)(2))(2)](BF(4))(6) (2) that features a rhombiclike structure with an almost planar hexagon of metal ions.  相似文献   

14.
Acyclic pyridine-2-carboxamide- and thioether-containing hexadentate ligand 1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpctb), in its deprotonated form, has afforded purple low-spin (S = 0) iron(II) complex [Fe(bpctb)] (1). A new ligand, the pyrazine derivative of H(2)bpctb, 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpzctb), has been synthesized which has furnished the isolation of purple iron(II) complex [Fe(bpzctb)].CH(2)Cl(2) (4) (S = 0). Chemical oxidation of 1 by [(eta(5)-C(5)H(5))(2)Fe][PF(6)] or [Ce(NO(3))(6)][NH(4)](2) led to the isolation of low-spin (S = 1/2) green Fe(III) complexes [Fe(bpctb)][PF(6)] (2) or [Fe(bpctb)][NO(3)].H(2)O (3), and oxidation of 4 by [Ce(NO(3))(6)][NH(4)](2) afforded [Fe(bpzctb)][NO(3)].H(2)O (5) (S = 1/2). X-ray crystal structures of 1 and 4 revealed that (i) in each case the ligand coordinates in a hexadentate mode and (ii) bpzctb(2-) binds more strongly than bpctb(2-), affording distorted octahedral M(II)N(2)(pyridine/pyrazine)N'(2)(amide)S(2)(thioether) coordination. To the best of our knowledge, 1 and 4 are the first examples of six-coordinate low-spin Fe(II) complexes of deprotonated pyridine/pyrazine amide ligands having appended thioether functionality. The Fe(III) complexes display rhombic EPR spectra. Each complex exhibits in CH(2)Cl(2)/MeCN a reversible to quasireversible cyclic voltammetric response, corresponding to the Fe(III)-Fe(II) redox process. The E(1/2) value of 4 is more anodic by approximately 0.2 V than that of 1, attesting that compared to pyridine, pyrazine is a better stabilizer of iron(II). Moreover, the E(1/2) value of 1 is significantly higher (approximately 1.5 V) than that reported for six-coordinate Fe(II)/Fe(III) complexes of the tridentate pyridine-2-carboxamide ligand incorporating thiolate donor site.  相似文献   

15.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

16.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

17.
Reaction of MnCl(2).4H(2)O with H(3)L (H(3)L = tris(6-hydroxymethyl-2-pyridylmethyl)amine) in methanol gives hepta-coordinated [Mn(H(3)L)]Cl(2) involving attachment of Mn(II) to all four nitrogens and three hydroxymethyl arms. Reaction of H(3)L with Fe(ClO(4))(2).6H(2)O in CH(3)CN in the presence of NaO(2)CC(6)H(5) in an attempt to make [Fe(III)OH(H(3)L)(O(2)CC(6)H(5))](ClO(4)), a putative model for soybean lipoxygenase-1, instead gave rise to the linear triiron(III) complex [Fe(3)L(2)](ClO(4))(3) with all three hydroxymethyl arms deprotonated and forming three alkoxide bridges between each Fe(III) centre. The central Fe(III) is hexa-coordinated to only the alkoxide bridges and flanked by two hepta-coordinated iron(III) centres analogous to the Mn(ii) complex. [Fe(3)L(2)](ClO(4))(3) exhibits two reversible 1e(-) reductions to mixed-valence [Fe(3)L(2)](2+) and [Fe(3)L(2)](+) forms. Structure data and magnetochemistry on [Fe(3)L(2)](ClO(4))(3) reveals the tightest Fe-O-Fe angle (87.4 degrees ) and shortest Fe...Fe distance (2.834 A) yet found for any weakly antiferromagnetically-coupled high spin alkoxide-bridged di- or triiron(iii) system and challenges current theories involved in correlating the extent/nature of magnetic interactions in such systems based on Fe-O(bridge) distances and Fe-O-Fe angles. The central hexa-alkoxide coordinated Fe(III) is novel and shows a remarkable resistance towards reduction to Fe(II).  相似文献   

18.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

19.
A family of homo-valent [Co(II)(7)(OH)(6)(L(1))(6)](NO(3))(2) (1), [(MeOH)(2) is a subset of Co(II)(7)(OH)(6)(L(1))(6)](NO(3))(2) (2) (where L(1)H = 2-iminomethyl-6-methoxyphenol) and hetero-valent [(NO(3))(2) is a subset of Co(III)Co(II)(6)(OH)(6)(L(2))(6)](NO(3))·3MeCN (4) (where L(2)H = 2-iminophenyl-6-methoxyphenol) complexes possess metallic skeletons describing planar hexagonal discs. Their organic exteriors form double-bowl shaped topologies, and coupled with their 3-D connectivity, this results in the formation of molecular cavities in the solid state. These confined spaces are shown to behave as host units in the solid state for guests including solvent molecules and charge balancing counter anions. Magnetic susceptibility measurements on 2 and 4 reveal weak ferro- and ferrimagnetism, respectively. The utilisation of other Co(II) salt precursors gives rise to entirely different species including the mononuclear and trinuclear complexes [Co(II)(L(2))(2)] (5) and [Co(III)(2)Na(I)(1)(L(3))(6)](BF(4)) (6) (where L(3)H = 2-iminomethyl-4-bromo-6-methoxyphenol).  相似文献   

20.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号