首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method has been developed for the determination of trace quantities of 2,4-dichloro-phenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 2,4-dichlorophenol (2,4-DCP), and 2,4,5-trichlorophenol (2,4,5-TCP) in human and rat urine. The method involves acid hydrolysis of the phenolic conjugates, extraction of the free phenols and acids, ethylation with diazoethane, silica-gel column chromatography clean-up of the derivatized urine extract, and gas chromatographic determination using the electron-capture detector. The average recoveries of 2,4-D, 2,4,5-T, 2,4-DCP, and 2,4,5-TCP from rat urine spiked with known amounts of the herbicides and their phenols were 94%, 98%, 92%, and 90%, respectively. The limits of detection for 2,4-D, 2,4,5-T, DCP, and TCP in rat urine were: 0.05, 0.01, 0.10, and 0.01 ppm, respectively. The method was used to analyze urine of rats given various levels of 2,4-D and 2,4,5-T by gavage. Results showed that levels of exposure of 3.75 mcg/kg for 2,4-D and 5.0 mcg/kg for 2,4,5-T in rats can be detected in urine within 24 hr from exposure. Urine samples from occupationally exposed people were analyzed and found to contain 0.2 to 1.0 ppm 2,4-D and 0.05 to 3.6 ppm 2,4,5-T.  相似文献   

2.
Solid-phase extraction of acidic herbicides   总被引:4,自引:0,他引:4  
A discussion of solid-phase extraction method development for acidic herbicides is presented that reviews sample matrix modification, extraction sorbent selection, derivatization procedures for gas chromatographic analysis, and clean-up procedures for high-performance liquid chromatographic analysis. Acidic herbicides are families of compounds that include derivatives of phenol (dinoseb, dinoterb and pentachlorophenol), benzoic acid (acifluorfen, chloramben, dicamba, 3,5-dichlorobenzoic acid and dacthal--a dibenzoic acid derivative), acetic acid [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)], propanoic acid [dichlorprop, fluazifop, haloxyfop, 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and silvex], butanoic acid [4-(2,4-dichlorophenoxy)butanoic acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB)], and other miscellaneous acids such as pyridinecarboxylic acid (picloram) and thiadiazine dioxide (bentazon).  相似文献   

3.
Chlorophenoxycarboxylic acid herbicides were separated and determined by capillary electrophoresis. An analysis of a six-component mixture containing 2,4-dichlorophenoxybutyric (2,4-DB), 2,4-dichlorophenoxypropionic (2,4-DP), 2,4,5-trichlorophenoxyacetic (2,4,5-T), 2,4-dichlorophenoxyacetic (2,4-D), and phenoxyacetic (PA) acids and 2,4-dichlorophenol (2,4-DCP), the product of their degradation in aqueous media, took no longer than 15 min. Solid-phase extraction on Diapak C-16 cartridges was used for sample preparation. The detection limits for herbicides in water samples with account for preconcentration (K = 250) were found to be 0.0005 mg/L for 2,4-DB, 2,4-DP, 2,4,5-T, and 2,4-D and 0.001 mg/L for PA. It was shown that humic acids (< 50 mg/L) do not interfere with the determination of chlorophenoxycarboxylic acids.  相似文献   

4.
The montmorillonite has been subjected to modification through ion-exchange reaction by N,N'-didodecyl-N,N'-tetramethylethanediammoniumdiiodide (DEDMAI). The modified sample was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The basal spacing of modified montmorillonite was determined as 28.72 A. The IR spectra of organomontmorillonite showed changes in C-H vibrations. The characterization of N,N'-didodecyl-N,N'-tetramethylethanediammonium montmorillonite (DEDMAM) and the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) on organomontmorillonite was studied as a function of the solution concentration. The adsorption energy (E) and adsorption capacity (qm) for phenoxyalkanoic acid herbicides adsorbing on organomontmorillonite (DEDMAM) were estimated using the Dubinin-Radushkevic (D-R) equation. These isotherms were modeled according to Freundlich and Dubinin-Radushkevic adsorption isotherms. The sorption of the herbicides on DEDMAM increased in order of MCPA<2,4-D<2,4-DB<2,4,5-T.  相似文献   

5.
In this paper, a novel strategy for multicomponent analysis of two classes of pesticides such as triazines (atrazine and simazine) and phenoxyalkanoic acids (2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 4-chlorophenoxyacetic acid (CPOAc), phenoxyacetic acid (POAc)) employing immuno-arrays is demonstrated. The approach is based on cross-reactive arrays of specific antibody pairs coupled to chemometric pattern recognition. The monoclonal antibody pairs employed in this work (atrazine-simazine and 2,4-D) are specific towards a set of analytes and preclude a particular set of others present in the sample matrix. Antibody pairs of atrazine, simazine, and 2,4-D are used to discriminate and quantify analyte of interest. Atrazine was quantified in presence of trace concentration of simazine and that of 2,4-D. The combinatorial cross-reactivity of antibody pairs towards simazine, atrazine and 2,4-D is used to distinguish among different classes of analytes and their influence on the signal suppression in immuno-techniques. These sensors exclude recognition by carbamates such as carbaryl and carbofuran.  相似文献   

6.
Procedures were developed for the ultrasonic and microwave extraction of pesticides, 2,4-dichlorophenoxyacetic (2,4-D) and 2,4,5-trichlophenoxyacetic (2,4,5-T) acids from soils for the subsequent determination by fluorescence polarization immunoassay (FPIA). The effect of the matrix composition of soils on the FPIA results was studied, and the optimum extractants and extraction conditions were selected. It was found that 40% ethanol is optimum for both extraction and FPIA determination, because it does not cause antibody denaturation. The recovery of pesticides in soil was 80–132% for 2,4-D and 101–138% for 2,4,5-T. Microwave extraction is more efficient than ultrasonic extraction for the determination of 2,4-D and 2,4,5-T in soil. The detection limit in soil and the analytical range are 2 and 4–200 μg/g, respectively, for 2,4-D and 20 and 80–5000 μg/g, respectively, for 2,4,5-T. Results of the determination of 2,4-D in soil by FPIA are in good agreement with the results of the determination by high-performance liquid chromatography. The procedures can be used for the rapid determination of chlorophenoxy acids in soils.  相似文献   

7.
采用气相色谱–质谱联用法检测棉花中3种苯氧羧酸类除草剂[2,4-D,2,4,5-T,2-甲-4-氯丁酸(MCPB)]的残留量。样品用甲酸酸化的丙酮提取,硫酸催化甲酯化反应,用气相色谱–质谱联用仪测定。采用HPLC法与GC–MS法对提取与衍生化步骤进行优化。2,4-D,2,4,5-T,MCPB 3种化合物在0.075~7.5 mg/kg范围内线性均良好,检出限分别为0.5,0.5,0.8μg/kg,测定结果的相对标准偏差分别为4.1%,4.3%,4.0%(n=5),方法回收率分别为93.6%,95.5%,93.9%。该方法各项指标均可满足检测要求。  相似文献   

8.
A sensitive dipstick assay for 2,4-dichlorophenoxyacetic acid (2,4-D) detection was developed. The assay was based on the competitive reaction of 2,4-D and enzyme tracer with monoclonal antibodies immobilised on an Ultrabind? membrane. The binding of enzyme tracer on the test strip was determined by a simple, portable reflectometer as remission at 657 nm. Using this technique, 2,4-D could be detected in a concentration range of 0.5 μg/L to 100 μg/L. The center point of the 2,4-D test was found at a concentration of 6 μg/L. Cross-reactivity with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as determined by this dipstick assay was 2.5% and 3% by standard ELISA technique using microtiter plates. The assay was applied in the detection of 2,4-D in real water samples, and sensitivity was comparable to spiked water samples. If combined with an effective extraction procedure that results in recovery rates of 90%, the dipstick assay can be used to monitor human exposure to 2,4-D from contamination in water, from oranges and in testing urine samples. Received: 2 September 1998 / Revised: 29 January 1999 / Accepted: 31 January 1999  相似文献   

9.
Summary A simple and rapid procedure for the two-dimensional TLC separation and identification of some chlorinated insecticides and herbicides is described. The separation is carried out on silica gel G with the following solvent systems: a) benzene-glacial acetic acid-n-hexane and b) petroleum fraction b.p. 80–100°C. The identification is achieved by spraying the chromatogram with diphenylamine and irradiating with U.V. light. The following pesticides were used in the procedure: aldrin, isodrin, dieldrin, endrin, p,p-DDT, p,p-DDE, lindane, toxaphene, methoxychlor, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxyacetic acid)-butyl ester (2,4-DB), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 4-chloro-2-methylphenoxyacetic acid (MCPA), 4-chlor-2-methylphenoxypropionic acid (MCPP) and dalapon. The herbicides 2,4-DB and MCPP could not be separated.
Zusammenfassung Eine einfache und schnelle Methode zur zweidimensionalen dünnschichtchromatographischen Trennung und Identifizierung chlorierter Insecticide und Herbicide wird beschrieben. Die Trennung wird auf Silicagel G mit Benzol-Eisessig-n-Hexan bzw. der Benzinfraktion Kp 80–100°C durchgeführt. Die Identifizierung erfolgt durch Besprühen mit Diphenylamin und UV-Bestrahlung. Folgende Pesticide wurden untersucht: Aldrin, Isodrin, Dieldrin, Endrin, p,p-DDT, p,p-DDE, Lindan, Toxaphen, Methoxychlor, 2,4-Dichlorphenoxyessigsäure (2,4-D), 4-(2,4-Dichlorphenoxyessigsäure)-butylester (2,4-DB), 2,4,5-Trichlorphenoxyessigsäure (2,4,5-T), 4-Chlor-2-methylphenoxyessigsäure (MCPA), 4-Chlor-2-methylphenoxypropionsäure (MCPP) und Dalapon. Die Herbicide 2,4-DB und MCPP konnten nicht getrennt werden.
  相似文献   

10.
《Analytical letters》2012,45(13-14):1421-1433
Abstract

Amides of 14 carboxylic acid herbicides were prepared by reacting the free acid with the amine in toluene for 1 hr at 80[ddot]C in the presence of PCl3 or P2I4. The acids include phenoxyacetic acids, arylacetic acids, and benzoic acids. Aniline, o-toluidine, 3,5-bis(trifluoromethyl)aniline, piperidine, and tetrahydroquinoline were the amine components. Excess of reagents and by-products of the reaction were removed by partitioning into aqueous acid and base. Retention times relative to 2,4-D anilide on 1% OV-22 and FSOT RSL-150 columns are listed for the anilides and should be useful for confirmation purposes. The anilides of 2,4-D, silvex and 2,4,5-T were obtained in better than 90% yield.  相似文献   

11.
Abstract

The behaviour of the three phenoxyacetic acid herbicides 2,4-D, 2,4,5-T and MCPA during underground passage and bankfiltration was tested in a model system consisting of laboratory filter columns filled with natural underground materials. Different redox environments were reproduced by operating the filters with natural aerobic and anaerobic groundwater. In the presence of oxygen, biodegradation of the three herbicides started after a lag phase. Under sulfate reducing conditions, no degradation could be observed. To assess the factors that may influence microbial degradation in the anaerobic environment, the concentration of herbicides, the time and the nutrient content were varied, but this did not increase degradation. The maximum retention of the herbicides in the filters was 30%, mainly due to adsorption to the filter material.  相似文献   

12.
Chlorophenoxy acid herbicides are intensively applied to get rid of unwanted plants because of their low cost and selectivity. Due to their toxicity, which depends on their chemical form, the European Community has established legal directives to restrict their use and to control their maximum residue levels in several matrices. Determination of chlorophenoxy acids—2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(2,4-dichlorophenoxy)propanoic acid (2,4-DP), 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB) and 2-(2,4,5-trichlorophenoxy)propanoic acid (2,4,5-TP) in spiked human urine samples has been carried out by capillary LC, after solid-phase extraction on a column packed with silica C18 restricted-access material. Chromatographic analysis was performed in gradient-elution mode at 25 °C, with injection of 20 μL low-organic-solvent composition herbicide solutions for focusing purposes on the head of the capillary column, and diode array detection at 232 nm. Urine samples collected during 24 h from healthy and unexposed volunteers were spiked in the concentration range 25–150 μg L−1; recoveries obtained were between 66 and 100% (n = 6 for each spiked level) and RSDs (relative standard deviations) were between 1 and 5%. Detection limits in the urine samples from volunteers were between 3.5 and 6.0 μg L−1. The developed methodology has allowed the clean-up and preconcentration of low volumes of untreated human urine without previous treatment, showing the effectiveness of the employed SPE sorbent for extracting the target analytes and ultimately resulting in the reduction of the sample-preparation time.  相似文献   

13.
Abstract

Salt formulations of 2,4-D (2,4-dichlorophenoxyacetic acid), 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid] have been analysed by reversed-phase HPLC using a C18-column with 50:50 (v/v) acetonitrile/2% acetic acid as eluant. Internal and external standard HPLC methods are compared.

Ester formulations of 2,4-D and 2,4,5–T are analysed, without hydrolysis, on the same column using 60:40 (v/v) acetonitrile/2% acetic acid as eluant. The method has been used in this laboratory to determine free phenoxy acid in ester formulations, and for the identification of esters in mixed ester formulations.

The methods are fast and accurate, and offer some advantages over previously-described methods.  相似文献   

14.
Summary A fuming sulphuric acid-ethanol esterification method has been applied to chlorophenoxy acids and some other herbicides. This method is compared with esterification by iodoethane and diazomethane. The chlorophenoxy acids studied were: 2,4-D, dichlorprop, MCPA, MCPB, mecoprop and 2,4,5-T. Other herbicides studied were: benazolin, bentazone, bromophenoxime, bromoxynil, chlorthal, dicamba, 3,6-dichloropicolinic acid, dinoseb, ethephon, fluroxypyr, glyphosate, haloxyfop, ioxynil, picloram, 2,3,6-TBA and triclopyr. Fuming sulphuric acid-ethanol esterification can be successfully applied to chlorophenoxy acids, benazolin, 3,6-dichloropicolinic acid, dinoseb, fluroxypyr, haloxyfop, picloram and triclopyr. The reproductibility of the method is ±5%.  相似文献   

15.
Abstract

Some carboxylic herbicides and plant growth regulators such as benzoic acid, 4-chlorophenoxyacetic acid, cinnamic acid, 2,4-D, indole-3-acetic acid, indolepropionic acid, α-naphthalleneacetic acid, β-naphthal eneacetic acid, β-naphthoxyacetic acid, phenoxyacetic acid, TCA and 2,4,5-T have been separated on BaSO4-CaSO4 (1:1) coatings in mixed solvent systems.

Quantitative separations of indole-3-acetic acid (100 μg) from 50–100 μg of benzoic acid, α-naphthaleneacetic acid and 2,4,5-T have been carried out successfully.  相似文献   

16.
Polarization fluoroimmunoassays (PFIA) were developed for the chlorinated pesticides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). In order to optimize the PFIA procedures, a number of fluorescein-labeled 2,4-D and 2,4,5-T derivatives were synthesized and the influence of their structures on PFIA characteristics was studied. Also, several antisera were tested in developing the PFIA for 2,4,5-T. The assays were adapted for use with the Abbott TDx Analyzer and could be run in automatic mode by the adaptation of existing software and protocols. Dynamic ranges for 2,4-D and 2,4,5-T were 0.2-200 ng mL–1 and 30-10 000 ng mL–1, respectively. Total time for the automated assay of 20 samples was about 22 min. PFIA provides a suitable means for screening of a large number of samples. The rapid determination of 2,4,5-T, which is one of the precursors of polychlorinated dibenzo-p-dioxins, one of the most toxic groups of pollutants, may potentially be used to provide preliminary evidence of dioxin contamination.  相似文献   

17.
In this work, an isotope dilution method for determination of selected acidic herbicides by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) was developed for surface water samples. Average percent recoveries of native analytes were observed to be between 70.8 and 93.5% and average recoveries of labeled quantification standards [(13)C(6)]2,4-D and [(13)C(6)]2,4,5-T were 85.5 and 101%, respectively. Using this method, detection limits of 0.05 ng/L for dicamba, MCPA, MCPP, and triclopyr, and 0.5 ng/L for 2,4-D were routinely achieved. The method was applied to measuring the concentration of these analytes in surface water samples collected from five sampling locations in the Lower Fraser Valley region of British Columbia, Canada. All of the herbicides monitored were detected at varying levels in the surface water samples collected. The highest concentrations detected for each analyte were 345 ng/L for 2,4-D, 317 ng/L for MCPA, 271 ng/L for MCPP, 15.7 ng/L for dicamba, and 2.18 ng/L for triclopyr. Average detection frequencies of the herbicides were 95% for MCPA, 80% for MCPP, 70% for dicamba, 65% for 2,4-D, and 46% for triclopyr. Seasonal variations of herbicide levels are also discussed.  相似文献   

18.
A practical method for residue analysis of 2,4-D, dicamba and 2,4,5-T in baked tobacco leaves has been developed using nonaqueous CE (NACE). The herbicide residues of 2,4-D, dicamba and 2,4,5-T in tobaccos were extracted by ultrasonication with ethyl acetate, followed by a cleanup procedure with gel permeation chromatography. The separation of 2,4-D, dicamba and 2,4,5-T by NACE was optimized based on orthogonal experiment design with four factors at three levels. The optimal NACE condition was established with the running buffer of 40.0 mmol/L ammonium acetate in 90% CH3CN (apparent pH 10.2), and the applied voltage of -25 kV over a capillary of 50 microm id x 46 cm (37.5 cm to the detector window), which gave a baseline separation of 2,4-D, dicamba and 2,4,5-T within 15 min. The LOD were ca. 0.4-0.6 microg/mL for the three herbicides, whereas the overall recovery ranged from 80.8 to 84.1%. The proposed method has been successfully applied to measure 300 real tobacco samples, and the residue profiles of the three herbicides in tobacco samples were obtained and evaluated.  相似文献   

19.
辛国斌  谭家镒  姚丽娟  朱昱  姜兆林  宋辉 《色谱》2008,26(1):116-118
建立了一种血液中2,4-二氯苯氧乙酸(2,4-D)、2-(2,4-二氯苯氧)-丙酸(2,4-DP)和4-氯-2-甲基-苯氧乙酸(MCPA)3种苯氧羧酸类除草剂的分析方法.血样用0.1 mol/L盐酸稀释后用GDX401大孔树脂吸附、用乙醚洗脱,萃取物用二氯丙醇在硫酸催化下进行酯化衍生,衍生物经气相色谱-电子捕获检测.2,4-D、2,4-DP和MCPA的检测限分别为20,8和40 ng/mL.定量分析用2,4-二氯苯乙酸作内标,线性关系和回收率结果均令人满意.  相似文献   

20.
张续  韩林学  邱天  胡小键  朱英  杨艳伟 《色谱》2023,41(3):224-232
基于96孔固相萃取-超高效液相色谱-串联质谱法,建立了人尿中2种苯氧乙酸除草剂、2种有机磷农药代谢物和4种拟除虫菊酯农药代谢物的测定方法。通过对液相色谱条件、质谱条件和样品前处理过程的系统优化,实现了在16 min内对8种目标分析物的分析测定。具体方法:1 mL尿液经β-葡萄糖醛酸酶酶解过夜,Oasis HLB 96孔固相萃取进行目标分析物的提取净化,甲醇洗脱;以0.1%(体积分数)乙酸乙腈和0.1%(体积分数)乙酸水作为流动相,Acquity BEH C_(18)作为分析柱进行色谱分离;负离子电喷雾(ESI-)多反应监测(MRM)模式下检测目标化合物,同位素内标法定量。2,4-二氯苯氧乙酸(2,4-D)、2,4,5-三氯苯氧乙酸(2,4,5-T)2种苯氧乙酸除草剂和3-苯氧基苯甲酸(3-PBA)、4-氟-3-苯氧基苯甲酸(4F-3PBA)、反式二氯乙烯基二甲基环丙烷羧酸(trans-DCCA)3种拟除虫菊酯农药代谢物在0.1~100μg/L内、对硝基苯酚(PNP)、3,5,6-三氯-2-吡啶酚(TCPY)2种有机磷农药代谢物、顺式二氯乙烯基二甲基环丙烷羧酸(cis-DCCA)1种拟除虫菊酯代谢物在0.2~100μg/L内线性关系良好,相关系数均大于0.9993;方法检出限为0.02~0.07μg/L,方法定量限为0.08~0.2μg/L;低、中、高3个水平下的加标回收率为91.1%~110.5%,日内精密度为2.9%~7.8%,日间精密度为6.2%~10%。应用该方法测定了214份尿液样本。结果显示除2,4,5-T外,其余7种目标分析物均有检出。TCPY、PNP、3-PBA、4F-3PBA、trans-DCCA、cis-DCCA、2,4-D的检出率为2.8%~99.1%。检出浓度(中位值)由高到低分别是2.0μg/L(TCPY)、1.8μg/L(PNP)、0.99μg/L(trans-DCCA)、0.81μg/L(3-PBA)、0.44μg/L(cis-DCCA)、0.35μg/L(2,4-D)和未检出(4F-3PBA)。该方法操作简便,定量准确,灵敏度高,每批次可完成96个样品测定,适用于人尿中多种农药及农药代谢物的批量分析测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号