首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate induced smectic A and smectic B phases in binary nematic liquid crystal mixtures, a generalized thermodynamic model has been developed in the framework of a combined Flory-Huggins free energy for isotropic mixing, Maier-Saupe free energy for orientational ordering, McMillan free energy for smectic ordering, Chandrasekhar-Clark free energy for hexagonal ordering, and phase field free energy for crystal solidification. Although nematic constituents have no smectic phase, the complexation between these constituent liquid crystal molecules in their mixture resulted in a more stable ordered phase such as smectic A or B phases. Various phase transitions of crystal-smectic, smectic-nematic, and nematic-isotropic phases have been determined by minimizing the above combined free energies with respect to each order parameter of these mesophases. By changing the strengths of anisotropic interaction and hexagonal interaction parameters, the present model captures the induced smectic A or smectic B phases of the binary nematic mixtures. Of particular importance is the fact that the calculated phase diagrams show remarkable agreement with the experimental phase diagrams of binary nematic liquid crystal mixtures involving induced smectic A or induced smectic B phase.  相似文献   

2.
The NMR spectra of the three solutes ortho-, meta-, and para-dichlorobenzene in the nematic and smectic A phases of the liquid crystals 8CB and 8OCB are analyzed to yield two orientational order parameters for each solute. Extrapolation of the asymmetry in the energy parameters that describe the orientational ordering in the nematic phase are used to provide estimates of the strength of the nematic potential in the smectic A phase. The experimentally determined asymmetry of the orientational order parameters in the smectic A phase is then used in conjunction with Kobayashi-McMillan theory applied to solutes to give information about the smectic A layering and the nematic/smectic A coupling. In both smectic A solvents, the solute smectic coupling constant, tau, is negative (with the origin fixed at the center of the smectic layer) for all solutes. The signs and relative values of tau indicate that the ortho and para solutes favor the interlayer region while the meta solute is more evenly distributed throughout the layers.  相似文献   

3.
Deuterium NMR measurements of the molecular orientational ordering (nematic order) are reported for a reentrant binary mixture of some alkoxy-eyanobiphenyls (nOCB) to which small amounts of perdeuterated p-xylene have been added. The results indicate that the degree of orientational order is enhanced at the smectic A to reentrant nematic phase transition. This effect is shown to be in agreement with the predictions of a Landau-type theory of the reentrant phase transition where-by this phase transition is explained as the result of a coupling between the smectic and the nematic order parameters.  相似文献   

4.
《Liquid crystals》1999,26(5):649-655
The Q-band electron paramagnetic resonance (EPR) spectrum of the frozen smectic phase of the mesogenic compound bis[N -(4'-n-pentoxyphenyl)-4-n-decyloxysalicylaldiminate] copper(II) is studied. An anisotropic EPR spectrum is observed if freezing from the SmA phase is done in the presence of a magnetic field; the sample tends to orient with the director perpendicular to the magnetic field. The relative intensities of the EPR signal of this exchange coupled system are discussed in relation to the orientational distribution of the molecules. The results appear to be compatible with a biaxial magnetic susceptibility in the SmA phase. This suggests that an ordering of the short axes of the molecules in the plane perpendicular to the director in the SmA mesophase may take place.  相似文献   

5.
It is well known that, with respect to the director, nematic elastomers can be macroscopically aligned by uniaxial mechanical fields. Extending this method to a chiral smectic C elastomer, depending on the experimental set-up either smectic layer orientation or director orientation parallel to the stress axis occurs. In order to align the director and the smectic layers a biaxial mechanical field (e.g. shear field) consistent with the phase symmetry has to be used to achieve a macroscopically uniform orientation of the untwisted smectic C* structure.  相似文献   

6.
Measurements of the orientational and translational order parameters for the nematic, smectic A and smectic C phases of a commercial liquid crystal material are reported. The order parameters have been obtained by analysis of the angular distribution of the intensity of X-rays scattered by a sample aligned by a magnetic field. Results are presented as a function of temperature, and it is found that the apparent orientational order parameter in the smectic C phase decreases with decrease in temperature. This is explained using a model of random tilt. The experimental order parameters are compared with those calculated from a mean field model.  相似文献   

7.
Orientational ordering of four liquid-crystalline acrylates induced by the surface of KBr plates over a wide temperature range was studied by the IR dichroism technique. IR spectra of homogeneously aligned samples were used to calculate the angles between the direction of the transition moment for a series of vibrations of the mesogenic fragment and its long axis. A method for calculation of the homeotropic orientation parameter of molecules was proposed. The orientation parameters of homogeneously and homeotropically aligned samples in the nematic, smectic (A), and chiral smectic (I andH) phases were calculated. Thein situ photopolymerization of acrylates in the smectic phases occurs with retention of the orientational ordering in the polymer films formed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 319–323, February, 1999.  相似文献   

8.
The phase and orientational behaviors of a series of liquid crystalline (LC) AB-type diblock copolymers comprising thermotropic main-chain (MC) polyester and side-group (SG) polymethacrylate blocks were investigated by X-ray diffraction. The MC and SG blocks were phase separated and gave rise to their individual mesophases that coexisted at equilibrium. The samples were oriented by using either a magnetic field or a mechanical field. In magnetically aligned samples both the MC and SG microphases were oriented with their smectic planes orthogonal to the magnetic field direction, independent of the copolymer composition. Mechanically aligned, fiber samples showed different orientations of the MC and SG smectic planes for different sample compositions. In this case the disposition of the smectic planes of the MC and SG blocks was driven by the relative length of the two blocks. Some features of the X-ray patterns of the copolymers were compared to those of the MC and SG homopolymers. In addition, the MC smectic domains crystallized on annealing without affecting the orientation that had been achieved by applying a magnetic field. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 21–29, 1998  相似文献   

9.
Spectroscopic ellipsometry has been used to measure enhanced orientational ordering at the nematic–air interface of 8CB as the smectic A phase was approached by cooling from the isotropic phase. The depth profile of the orientational order has been estimated by calculating the ellipsometric parameters for a homeotropic uniaxial surface film on a uniaxial sub‐phase using the Abelès matrix method. This showed that the depth of the enhanced orientationally ordered region was ~10 nm at 0.5°C above the nematic–smectic A transition. This is substantially less than the thickness of the region with surface enhanced smectic order as determined by neutron reflection and a model of the surface structure consistent with both sets of results is proposed.  相似文献   

10.
Relaxation in the nematic liquid crystalline phase is known to be sensitive to its proximity to both isotropic and smectic phases. Recent transient optical Kerr effect (OKE) studies have revealed, rather surprisingly, two temporal power laws at short to intermediate times and also an apparent absence of the expected exponential decay at longer times. In order to understand this unusual dynamics, we have carried out extensive molecular dynamics simulations of transient OKE and related orientational time correlation functions in a system of prolate ellipsoids (with aspect ratio equal to 3). The simulations find two distinct power laws, with a crossover region, in the decay of the orientational time correlation function at short to intermediate times (in the range of a few picoseconds to a few nanoseconds). In addition, the simulation results fail to recover any long time exponential decay component. The system size dependence of the exponents suggests that the first power law may originate from the local orientational density fluctuations (like in a glassy liquid). The origin of the second power law is less clear and may be related to the long range fluctuations (such as smecticlike density fluctuations)--these fluctuations are expected to involve small free energy barriers. In support of the latter, the evidence of pronounced coupling between orientational and spatial densities at intermediate wave numbers is presented. This coupling is usually small in normal isotropic liquids, but it is large in the present case. In addition to slow collective orientational relaxation, the single particle orientational relaxation is also found to exhibit slow dynamics in the nematic phase in the long time.  相似文献   

11.
Aqueous dispersions of Laponite, a synthetic clay neutralized by sodium counterions, are used as a model of charged anisotropic colloids to probe the influence of the shape of the particle on their organization within a macroscopic nematic phase. Because of the large fraction of condensed sodium counterions in the vicinity of the clay particle, (23)Na NMR is a sensitive probe of the nematic ordering of the clay dispersions. We used line shape analysis of the (23)Na NMR spectra and measurements of the Hahn echo attenuation to quantify the degree of alignment of the individual clay particles along a single nematic director. As justified by simple dynamical simulations of the interplay between the sodium quadrupolar relaxation and its diffusion through the porous network limited by the surface of the clay particles, we probe the degree of ordering within these clay nematic dispersions by measuring the variation of the apparent (23)Na NMR relaxation rates as a function of the macroscopic orientation of the clay dispersion within the magnetic field.  相似文献   

12.
The conformation of the main-chain (backbone) of a combined main-chain/side-chain liquid crystalline polymer has been qualitatively determined by small angle neutron scattering in the oriented nematic, the smectic A and the smectic C phases. The polymer backbone presents only a weak anisotropy, of prolate shape, in the nematic and the smectic C phases. A stronger reorientation of the backbones in the direction of the applied magnetic field is measured for the SA phase. However, this anisotropy remains small compared to the stretching of a main-chain liquid crystal polymer and the smectic structure results apparently from side-chain ordering. On the other hand, hydrodynamic measurements show that the combined polymer, in solvent, is as flexible as a polystyrene chain. This result is compatible with an explanation for the weak observed anisotropy.  相似文献   

13.
Aqueous mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine pentaacetate (DMPE-DTPA) with complexed thulium ions (Tm(3+)), and cholesterol with varying molar ratio were studied at different temperatures in the presence and absence of a magnetic field. For mixtures without cholesterol weakly magnetically alignable small disks, so-called bicelles, are formed at temperatures below the phase transition temperature (5-22 °C), as shown by cryo-transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS). In presence of 16 mol % cholesterol the disk size and the magnetic alignability were larger within the entire temperature range studied (5-40 °C). Cholesterol acts as a spacer between DMPE-DTPA with complexed Tm(3+), allowing these molecules to integrate more frequently into the planar part of the bicelles. Replacing DMPC partially by cholesterol thus lead to an increase in magnetic aligning by a higher amount of the magnetic handles (Tm(3+) complexed to DMPE-DTPA) in the plane and by an increased number of phospholipids in the enlarged bicelles. The magnetic aligning was most pronounced at 5 °C. The temperature-dependent structural changes of the DMPC/cholesterol/DMPE-DTPA/Tm(3+) aqueous mixtures are complex, including the transient appearance of holes in the disks at intermediate temperatures.  相似文献   

14.
We have examined the orientational ordering of nematic liquid crystals (LCs) supported on organized monolayers of dipeptides with the goal of understanding how peptide-based interfaces encode intermolecular interactions that are amplified into supramolecular ordering. By characterizing the orientations of nematic LCs (4-cyano-4'-pentylbiphenyl and TL205 (a mixture of mesogens containing cyclohexane-fluorinated biphenyls and fluorinated terphenyls)) on monolayers of l-cysteine-l-tyrosine, l-cysteine-l-phenylalanine, or l-cysteine-l-phosphotyrosine formed on crystallographically textured films of gold, we conclude that patterns of hydrogen bonds generated by the organized monolayers of dipeptides are transduced via macroscopic orientational ordering of the LCs. This conclusion is supported by the observation that the ordering exhibited by the achiral LCs is specific to the enantiomers used to form the dipeptide-based monolayers. The dominant role of the -OH group of tyrosine in dictating the patterns of hydrogen bonds that orient the LCs was also evidenced by the effects of phosphorylation of the tyrosine on the ordering of the LCs. Overall, these results reveal that crystallographic texturing of gold films can direct the formation of monolayers of dipeptides with long-range order, thus unmasking the influence of hydrogen bonding, chirality, and phosphorylation on the macroscopic orientational ordering of LCs supported on these surfaces. These results suggest new approaches based on supramolecular assembly for reporting the chemical functionality and stereochemistry of synthetic and biological peptide-based molecules displayed at surfaces.  相似文献   

15.
A curious, strong dielectric relaxation process (δ) was found in rapidly cooled poly(ethylene naphthalate). This process, which is located between two known β and β* relaxations of PEN, appears predominantly after rapid cooling and remains present even after heating above the glass transition temperature. In view of its very low activation energy of ∼10 kJ/mol, its markedly high relaxation strength of up to Δɛ=5, and its Debye-like peak shape, a collective relaxation mechanism is proposed, which involves collective crankshaft motions of the -O-CH2-CH2-O- sequences in a regular arrangement of the main chains. The analogy between this δ-relaxation and an ultra-slow relaxation recently found in the smectic E phase of a side-chain liquid crystalline polymer suggests a (close-to) hexagonal smectic ordering in PEN. The very existence of liquid-crystalline order in PEN is corroborated by the observation of a thermo-reversible discontinuity in the relaxation parameters around −90 °C, which resembles a broadened LC-LC phase transition. Re-evaluation of experimental data of the β* relaxation, which occurs in the non-crystalline fraction of PEN, suggests that this relaxation is sensitive to the local orientational order, which extends from nematic to isotropic. The shift in the temperature of the β* peak and even the splitting of this peak found by other authors can be ascribed to the lowering of the activation energy by the local ordered packing of the PEN chains in line with a lower activation energy in the nematic order. The coexistence of isotropic and nematic regions in PEN is put in the context of orientational order fluctuations during the induction period of cold crystallisation of semi-flexible polymers. Received: 31 August 2000 Accepted: 30 October 2000  相似文献   

16.
Hydrogen-bonded blends based on smectic comb-shaped functionalized LC copolymers containing alkyloxy-4-hydroxybenzoic acid fragments (proton donor) and the low molecular weight dopant 4-(4-pyridyloyl)cyanobenzoate (proton acceptor) were obtained. It was observed that blends containing 10–25 mol-% of low molecular weight dopants form a reentrant nematic phase (SmA-RN-SmA-I). The blend behavior in the magnetic field was studied, and the orientational elastic constants of the RN phase were determined.  相似文献   

17.
《Liquid crystals》1998,25(2):199-206
The orientational behaviour of nematic compounds having twin phenylbenzoate mesogens was examined under a wide range of a.c. electric fields (0-2 V mum-1 and 10Hz-50 kHz). For this study, crossed polarizing optical microscopy (POM) and real-time X-ray diffraction (RTXRD) measurements were employed to investigate optical and orientational response. These nematic compounds have a positive dielectric anisotropy and a relatively low epsilon// relaxation frequency which allowed study in both homeotropic and planar orientations over a controllable frequency range. The optical behaviour and X-ray results corresponded well, providing a tool for understanding the orientational behaviour of these liquid crystals. For homeotropic alignment, an electric field of over 1 V mum-1 was required in order to obtain good orientation. However, homeotropic orientation depended on a delicate balance between thermal fluctuations and dielectric torque imposed by the electric field, which are both strongly related to the elasticity of the LC domains. Due to this effect, the highest orientation parameter achieved for homeotropic orientation was only 0.48, which indicated that this state was still non-equilibrium. On the other hand, for planar orientation, a uniform texture with orientation parameter of 0.65 was easily obtained even at electric fields as low as 0.2 V mum-1. The application of an electric field stronger than 1 V mum-1 induced a distortion in the texture, and reduced the orientation parameter to 0.45 for planar alignment.  相似文献   

18.
Theuniquepropertyoftheazobenzenegroupisitscis transisomerizationcausedbybeingirradiatedwithappropriateUVlight(suchas 356nmwhichdependsontheUV Visibleab sorptionofthecompound)andthusmonomericorpolymericliquidcrystalscontainingazoben zenegroupsshow promisef…  相似文献   

19.
Computer simulations of the molecular motion of polymer chains in the presence of a strong nematic field were carried out by the method of Brownian dynamics. Two models were studied: the first model (linear liquid crystal) is a freely jointed chain with rigid bonds, the second model (comb-like liquid crystal) is a chain with fixed bond angles and rigid side groups. The influence of ordering on chain conformations, orientational and translational mobility and spectra of relaxation times was investigated.  相似文献   

20.
《Liquid crystals》1997,23(1):113-126
The responses of freely-suspended micron-sized liquid crystal droplets subjected to an alternating electric field are presented. By examining droplets of isotropic, nematic bipolar, and nematic radial configurations, we test the effect of anchoring on the droplet response. Specifically, using birefringence and scattering dichroism we measure the relaxation of electric field-induced orientation following a field pulse. Results indicate that bipolar and radial droplets in suspension orient in the field through very different mechanisms. Bipolar droplets are observed to rotate their defect axes in the field while radial droplets orient through a nematic distortion. By varying the field pulse, we observe that droplets also respond differently to the field depending on their relative sizes. In radial droplet suspensions we quantitatively measure time scales associated with the reorientation and restructuring of the defect region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号