首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
An analytical solution (in the form of a Neumann series) of the problem of rarefied gas flow in a plane channel with infinite walls in the presence of a pressure gradient (Poiseuille flow) parallel to them is constructed within the framework of the kinetic approach in an isothermal approximation. The ellipsoidal-statistical model of the Boltzmann kinetic equation and the diffuse reflection model are used as the basic equation and the boundary condition, respectively. Using the resulting distribution function, the mass and heat flux densities in the direction of the pressure gradient per unit channel length in the y′ direction are calculated, and profiles of the gas mass velocity and heat flux in the channel are constructed. The results obtained for the continuum and free-molecular flow models are analyzed and compared with similar results obtained by numerical methods.  相似文献   

2.
A periodic boundary condition has been developed that can be used in conjunction with a specified flow rate to produce accurate results in spatially periodic geometries. This condition is useful in situations where the flow rate is known, or more importantly, in cases where the pressure gradient is not known a priori, such as in countercurrent flows. Using the present condition, the flow rate is imposed at the inlet in terms of a bulk velocity, but the velocity field evolves as part of the solution. The condition is formulated to be suitable for both fixed and moving periodic domains. For the case of a moving domain, a correction is introduced to account for changes in the instantaneous velocity through the periodic edges. Under periodic conditions, these corrections integrate to zero over a complete (temporal) period. The new periodic condition is shown to produce accurate results for flat and wavy‐walled channels under both induced flow and countercurrent conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Experiments on a steady flow through a nominally 2-D exit geometry with rounded edges are presented for the Reynolds number range 300<Re<25,000. The results indicate that the channel flow expands and decelerates upstream of the exit plane resulting in large pressure recovery, especially for turbulent channel flow. It is shown that pressure recovery is a function of the dimensionless edge radius and Re. Pressure recoveries of up to 20% are reported at large Re for dimensionless radii as small as r/h=0.625. It is also found that the rounded exit results in turbulence levels as much as 25% higher than sharp-edged exits.  相似文献   

4.
In the paper, a cross‐flow fan in refrigerant operating condition is systematically simulated using user‐defined functions. Three‐dimensional simulations are acquired with Navier–Stokes equations coupled with k–ε turbulence model, and internal flow characteristics of an indoor split‐type air conditioner are obtained, which is mainly composed of cross‐flow fan and heat exchanger. It has systematically been simulated in the isothermal flow condition that the performance of cross‐flow fan may be reduced easily with dry or humid air, and in the refrigerant operating condition in which user‐defined functions are applied to the humid air, considered as a mixture of dry air and vapor. A density‐modulated function is adopted to deal with the condensation of the vapor at the heat‐transfer region approximately. The results show flow mechanism of the two gas‐phase flow, including phase‐vary process. The distribution of the parameters is not uniform at the inlet of the machine, the intensity and position of pressure and velocity vary along the axial direction of the fan, the distribution of vapor volume fraction and turbulent intensity in heat‐transfer region is obtained, and the external characteristic data of the indoor machine are obtained and analyzed. Compared with the experimental data, the calculated characteristic curves and designed parameters are on target. © British Crown Copyright 2010/MOD. Reproduced with permission. Published by John Wiley & Sons, Ltd.  相似文献   

5.
The fully elliptic Reynolds-averaged Navier–Stokes equations have been used together with Lam and Bremhorst's low-Reynolds-number model, Chen and Patel's two-layer model and a two-point wall function method incorporated into the standard k-? model to predict channel flows and a backward-facig step flow. These flows enable the evaluation of the performance of different near-wall treatments in flows involving streamwise and normal pressure gradients, flows with separation and flows with non-equilibrium turbulence characteristics. Direct numerical simulation (DNS) of a channel flow with Re =3200 further provides the detailed budgets of each modelling term of the k and ?-transport equations. Comparison of model results with DNS data to evaluate the performance of each modelling term is also made in the present study. It is concluded that the low-Reynolds-number model has wider applicability and performs better than the two-layer model and wall function approaches. Comparison with DNS data further shows that large discrepancies exist between the DNS budgets and the modelled production and destruction terms of the ? equation. However, for simple channel flow the discrepancies are similar in magnitude but opposite in sign, so they are cancelled by each other. This may explain why, even when employing such an inaccurately modelled ?-equation, one can still predict satisfactorily some simple turbulent flows.  相似文献   

6.
E. Erdem  K. Kontis 《Shock Waves》2010,20(2):103-118
The flow field resulting from a transverse injection through a slot into supersonic flow is numerically simulated by solving Favre-averaged Navier–Stokes equations with κω SST turbulence model with corrections for compressibility and transition. Numerical results are compared to experimental data in terms of surface pressure profiles, boundary layer separation location, transition location, and flow structures at the upstream and downstream of the jet. Results show good agreement with experimental data for a wide range of pressure ratios and transition locations are captured with acceptable accuracy. κω SST model provides quite accurate results for such a complex flow field. Moreover, few experiments involving a sonic round jet injected on a flat plate into high-speed crossflow at Mach 5 are carried out. These experiments are three-dimensional in nature. The effect of pressure ratio on three-dimensional jet interaction dynamics is sought. Jet penetration is found to be a non-linear function of jet to free stream momentum flux ratio.  相似文献   

7.
A numerical study has been performed for the periodically fully-developed flow in two-dimensional channels with streamwise-periodic round disturbances on its two walls. To accurately describe the round disturbance boundary condition, a body fitted grid was used. The flow and heat transfer have been studied in the range of Reynolds number, Re=50–700, and Prandtl number Pr=0.71. The influences of disturbance parameters and Reynolds number on heat transfer and friction have been investigated in detail. Some of the solutions have been examined using both steady and unsteady finite difference schemes; and the same results have been obtained. The results show that different flow patterns can occur with different deployments of the disturbances. With appropriate configuration of the disturbances, the Nusselt number can reach a value four times greater than in a smooth channel at the same condition, with the penalty of a much greater pressure drop. On the other hand, if the disturbances are not deployed properly, augmentation of heat transfer cannot be acquired. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Flow pattern analysis of linear gradient flow distribution   总被引:1,自引:0,他引:1  
This paper uses the Oseen transformation to solve the differential equations governing motion of the vertical linear gradient flow distribution close to a wall surface. The Navier-Stokes equations are used to consider the inertia term along the flow direction. A novel contour integral method is used to solve the complex Airy function. The boundary conditions of linear gradient flow distribution for finite problems are determined. The vorticity function, the pressure function, and the turbulent velocity profiles are provided, and the stability of particle trajectories is studied. An Lx-function form of the third derivative circulation is used to to simplify the solution. Theoretical results are compared with the experimental measurements with satisfactory agreement.  相似文献   

9.
The lattice Boltzmann (LB) method is used to study the hydrodynamic force and torque acting on a sphere held stationary between parallel plates in pressure‐driven flow. This and associated flow configurations are explored in this paper. LB results are in excellent agreement with existing theory and numerical results for simple pressure‐driven flow between parallel plates, for flow through a periodic medium of spheres [Zick AA, Homsy GM. Stokes flow through periodic arrays of spheres. Journal of Fluid Mechanics 1982; 115: 13], and for the force and torque acting on a sphere held fixed at the quarter vertical position in a pressure‐driven flow between parallel plates. In the latter case, LB calculations reveal a screening effect caused by neighboring periodic images of the test sphere. It is shown that the test sphere is hydrodynamically decoupled from its periodic images when separated by approximately 30 sphere radii. LB results for force and torque as a function of sphere height and flow cell height are also reported. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
In the present work a finite‐difference technique is developed for the implementation of a new method proposed by Aristov and Pukhnachev (Doklady Phys. 2004; 49 (2):112–115) for modeling of the axisymmetric viscous incompressible fluid flows. A new function is introduced that is related to the pressure and a system similar to the vorticity/stream function formulation is derived for the cross‐flow. This system is coupled to an equation for the azimuthal velocity component. The scheme and the algorithm treat the equations for the cross‐flow as an inextricably coupled system, which allows one to satisfy two conditions for the stream function with no condition on the auxiliary function. The issue of singularity of the matrix is tackled by adding a small parameter in the boundary conditions. The scheme is thoroughly validated on grids with different resolutions. The new numerical tool is applied to the Taylor flow between concentric rotating cylinders when the upper and lower lids are allowed to rotate independently from the inner cylinder, while the outer cylinder is held at rest. The phenomenology of this flow is adequately represented by the numerical model, including the hysteresis that takes place near certain specific values of the Reynolds number. Thus, the present results can be construed to demonstrate the viability of the new model. The success can be attributed to the adequate physical nature of the auxiliary function. The proposed technique can be used in the future for in‐depth investigations of the bifurcation phenomena in rotating flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Using a non‐conforming C0‐interior penalty method and the Galerkin least‐square approach, we develop a continuous–discontinuous Galerkin finite element method for discretizing fourth‐order incompressible flow problems. The formulation is weakly coercive for spaces that fail to satisfy the inf‐sup condition and consider discontinuous basis functions for the pressure field. We consider the results of a stability analysis through a lemma which indicates that there exists an optimal or quasi‐optimal least‐square stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, and on the geometry of the finite element in the mesh. We provide several numerical experiments illustrating such dependence, as well as the robustness of the method to deal with arbitrary basis functions for velocity and pressure, and the ability to stabilize large pressure gradients. We believe the results provided in this paper contribute for establishing a paradigm for future studies of the parameter of the Galerkin least square method for second‐gradient theory of incompressible flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers (We) and Grashof numbers (Gr) . The numerical results show that for high Weissemberg numbers (We>7.4 × 10?5) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased (Gr>17 × 10?4) , the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents experimental investigations on Freon R141b flow boiling in rectangular microchannel heat sinks. The main aim is to provide an appropriate working fluid for microchannel flow boiling to meet the cooling demand of high power electronic devices. The microchannel heat sink used in this work contains 50 parallel channels, with a 60 × 200 (W × H) μm cross-section. The flow boiling heat transfer experiments are performed with R141b over mass velocities ranging from 400 to 980 kg/(m2 s) and heat flux from 40 to 700 kW/m2, and the outlet pressure satisfying the atmospheric condition. The fluid flow-rate, fluid inlet/outlet temperature, wall temperature, and pressure drop are measured. The results indicate that the mean heat transfer coefficient of R141b flow boiling in present microchannel heat sinks depends heavily on mass velocity and heat flux and can be predicted by Kandlikar’s correlation (Heat Transf Eng 25(3):86–93, 2004). The two-phase pressure drop keeps increasing as mass velocity and exit vapor quality rise.  相似文献   

14.
Heat transfer characteristics in the laminar boundary layer with transpiration cooling function are numerically analyzed by an integral method. The effects of coolant injection ratio, and the Re and Pr numbers of the exterior hot flow on the temperature at porous plate surface are discussed. The numerical results and discussions indicate that the surface temperature falls with an increase of coolant injection ratio, the temperature distribution on the surface is not uniform, and the effects of the Re number under lower Pr number condition are distinctly different to that under the higher Pr number condition.  相似文献   

15.

This study investigates the electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids through a microchannel under the Navier slip boundary condition. The flow is driven by the pressure gradient and electromagnetic force where the electric field is applied horizontally, and the magnetic field is vertically (upward or downward). When the electric field direction is consistent with the pressure gradient direction, the changes of the steady flow rate and velocity with the Hartmann number Ha are irrelevant to the direction of the magnetic field (upward or downward). The steady flow rate decreases monotonically to zero with the increase in Ha. In contrast, when the direction of the electric field differs from the pressure gradient direction, the flow behavior depends on the direction of the magnetic field, i.e., symmetry breaking occurs. Specifically, when the magnetic field is vertically upward, the steady flow rate increases first and then decreases with Ha. When the magnetic field is reversed, the steady flow rate first reduces to zero as Ha increases from zero. As Ha continues to increase, the steady flow rate (velocity) increases in the opposite direction and then decreases, and finally drops to zero for larger Ha. The increase in the fractional calculus parameter α or Deborah number De makes it take longer for the flow rate (velocity) to reach the steady state. In addition, the increase in the strength of the magnetic field or electric field, or in the pressure gradient tends to accelerate the slip velocity at the walls. On the other hand, the increase in the thickness of the electric double-layer tends to reduce it.

  相似文献   

16.
An analysis of the sound produced when a line vortex interacts at low Mach number with forward or backward facing steps is made. The radiation is dominated by an aeroacoustic dipole whose strength is equal to the unsteady drag on the step. The drag is determined by the vorticity distribution, and a correct estimate of the sound must therefore include contributions from vorticity in the separated flow induced by the vortex. The separation is modelled by assuming that the shed vorticity rolls up into a concentrated core, fed by a connecting sheet from the edge of the step of negligible circulation. The motion everywhere is irrotational except at the impinging vortex and the separation core, and the trajectory of the core is governed by an emended Brown & Michael equation. For large steps it is found that estimates of the generated sound that neglect separation are typically an order of magnitude too large. The sound levels predicted for small steps with and without separation are of comparable magnitudes, although the respectivephasesare different.Turbulentflow over a step frequently involves separation and large surface pressure fluctuations at reattachment zones. The results of this paper suggest that numerical schemes for determining the noise generated by turbulent flow over a step must take proper account of “forcing” of the separation region by the impinging turbulence and of vorticity production via the no-slip condition.  相似文献   

17.
Interphase momentum transport in heterogeneous gas–solid systems with multi-scale structure is of great importance in process engineering. In this article, lattice Boltzmann simulations are performed on graphics processing units (GPUs), the computational power of which exceeds that of CPUs by more than one order of magnitude, to investigate incompressible Newtonian flow in idealized multi-scale particle–fluid systems. The structure consists of a periodic array of clusters, each constructed by a bundle of cylinders. Fixed pressure boundary condition is implemented by applying a constant body force to the flow through the medium. The bounce-back scheme is adopted on the fluid–solid interfaces, which ensures the no-slip boundary condition. The structure is studied under a wide range of particle diameters and packing fractions, and the drag coefficient of the structure is found to be a function of voidages and fractions of the clusters, besides the traditional Reynolds number and the solid volume fractions. Parameters reflecting multi-scale characters are, therefore, demonstrated to be necessary in quantifying the drag force of heterogeneous gas–solid system. The numerical results in the range 0.1 ≤ Re ≤ 10 and 0 < ? < 0.25 are compared with Wen and Yu's correlation, Gibilaro equation, EMMS-based drag model, the Beetstra correlation and the Benyahia correlation, and good agreement is found between the simulations and the EMMS-based drag model for heterogeneous systems.  相似文献   

18.
In this paper, we present a novel pressure-based semi-implicit finite volume solver for the equations of compressible ideal, viscous, and resistive magnetohydrodynamics (MHD). The new method is conservative for mass, momentum, and total energy, and in multiple space dimensions, it is constructed in such a way as to respect the divergence-free condition of the magnetic field exactly, also in the presence of resistive effects. This is possible via the use of multidimensional Riemann solvers on an appropriately staggered grid for the time evolution of the magnetic field and a double curl formulation of the resistive terms. The new semi-implicit method for the MHD equations proposed here discretizes the nonlinear convective terms as well as the time evolution of the magnetic field explicitly, whereas all terms related to the pressure in the momentum equation and the total energy equation are discretized implicitly, making again use of a properly staggered grid for pressure and velocity. Inserting the discrete momentum equation into the discrete energy equation then yields a mildly nonlinear symmetric and positive definite algebraic system for the pressure as the only unknown, which can be efficiently solved with the (nested) Newton method of Casulli et al. The pressure system becomes linear when the specific internal energy is a linear function of the pressure. The time step of the scheme is restricted by a CFL condition based only on the fluid velocity and the Alfvén wave speed and is not based on the speed of the magnetosonic waves. Being a semi-implicit pressure-based scheme, our new method is therefore particularly well suited for low Mach number flows and for the incompressible limit of the MHD equations, for which it is well known that explicit density-based Godunov-type finite volume solvers become increasingly inefficient and inaccurate because of the more and more stringent CFL condition and the wrong scaling of the numerical viscosity in the incompressible limit. We show a relevant MHD test problem in the low Mach number regime where the new semi-implicit algorithm is a factor of 50 faster than a traditional explicit finite volume method, which is a very significant gain in terms of computational efficiency. However, our numerical results confirm that our new method performs well also for classical MHD test cases with strong shocks. In this sense, our new scheme is a true all Mach number flow solver.  相似文献   

19.
In this study, a large eddy simulation of the three-dimensional shear flow over a flow-excited Helmholtz resonator has been implemented. The simulations have been performed over a wide range of flow speeds to analyse the effect of the inlet flow properties on the excitation condition. For validation proposes, the results obtained from the numerical simulations have been compared with published experimental data and show that numerical modelling provides an accurate representation of the pressure fluctuations inside the cavity. The main objective of this paper is to gain an understanding of the flow features over a flow-excited Helmholtz resonator. To this end, using the numerical model, the interaction of a turbulent boundary layer with a Helmholtz resonator has been considered, and the characteristics of the flow inside the resonator and over the orifice for various flow conditions are also analysed.  相似文献   

20.
The hyperelasticity condition imposed on a material in which the stress is given as a function of the deformation gradient requires the existence of a strain-energy density function. If the material is incompressible, the indeterminacy of the pressure field is normally an additional postulate on material behavior. However, it is shown that in the case of a material in which the strain is determined as a function of an appropriately chosen stress measure, hyperelasticity demands the existence of a complementary strain-energy density function and the incompressibility condition isequivalent to the indeterminacy of the pressure field. The dependence of the complementary strain-energy density on the pressure, necessary and sufficient for incompressibility, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号