首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While the sulfur conversion reaction kinetics in Li–S batteries is nowadays improved by the use of appropriate electrocatalysts,it remains a challenge for the batteries to perform well under the lean electrolyte condition where polysulfide shuttle,electrode passivation and the loss of electrolyte due to side reactions,are aggravated.These challenges are addressed in this study by the tandem use of a polysulfide conversion catalyst and a redox–targeting mediator in a gel sulfur cathode.Specifical...  相似文献   

2.
To get a high sulfur loaded porous carbon/sulfur cathode material with an excellent performance, we investigated four different sulfur loading treatments. The samples were analyzed by the Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD) patterns, thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). We proved that it is more effective to introduce the sulfur into the pores of porous carbon at 300 °C than at 155 °C. Especially, the porous carbon/sulfur composite heated in a sealed reactor at 300 °C for 8 h presents a fine sulfur load with sulfur content of 78 wt.% and exhibits an excellent electrochemical performance. The discharge capacity is 760, 727, 744, 713, and 575 mAh g?1 of sulfur at a current density of 80, 160, 320, 800, and 1,600 mA g?1 based on the sulfur/carbon composite, respectively. What is more, there is almost no decay at the current density of 800 mA g?1 for 50 cycles and coulombic efficiency remains over 95 %.  相似文献   

3.
Journal of Solid State Electrochemistry - With up to fivefold higher in energy density vs. lithium-ion battery, lithium–sulfur (Li–S) battery is a compelling energy storage system,...  相似文献   

4.
As is known, the depth of the electrochemical reduction of sulfur and lithium polysulfides, the reduction rate, and the cycle life of lithium–sulfur cells decrease with the electrolyte content. The present paper studies the reasons for the effect of the amount of electrolyte on the depth of sulfur reduction and the cycle life of lithium–sulfur cells. The main reason for the effect of the amount of electrolyte on the depth of the electrochemical reduction of sulfur was shown to be the generation of solvate complexes of lithium polysulfides. The minimum amount of electrolyte required for complete reduction of sulfur during the discharge of lithium–sulfur cells is determined by the composition of the generated solvate complexes of lithium polysulfides. The solvate numbers of the lithium ion in the solvate complexes of lithium polysulfides generted in sulfolane electrolyte systems were evaluated from the experimental data. An analysis of the results shows that the minimum solvate number of lithium ions in the solvate complexes of lithium polysulfides with sulfolane is 1.  相似文献   

5.
Wang  Qian  Gao  Haiyan  Cui  Qi  Wu  Keke  Hao  Feiyan  Yu  Jianguo  Zhao  Yongnan  Kwon  Young-Uk 《Journal of Solid State Electrochemistry》2019,23(2):657-666
Journal of Solid State Electrochemistry - N-containing porous aromatic framework 41 (PAF-41) with hierarchical porous structure has been readily synthesized through AlCl3 catalyzed Scholl reaction...  相似文献   

6.
In this paper, porous carbon was synthesized by an activation method, with phenolic resin as carbon source and nanometer calcium carbonate as activating agent. Sulfur–porous carbon composite material was prepared by thermally treating a mixture of sublimed sulfur and porous carbon. Morphology and electrochemical performance of the carbon and sulfur–carbon composite cathode were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and galvanostatic charge–discharge test. The composite containing 39 wt.% sulfur obtained an initial discharge capacity of about 1,130 mA?h g?1 under the current density of 80 mA?g?1 and presented a long electrochemical stability up to 100 cycles.  相似文献   

7.
8.
9.
Titania–sulfur (TiO2–S) composite cathode materials were synthesized for lithium–sulfur batteries. The composites were characterized and examined by X-ray diffraction, nitrogen adsorption/desorption measurements, scanning electron microscopy, and electrochemical methods, such as cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. It is found that the mesoporous TiO2 and sulfur particles are uniformly distributed in the composite after a melt-diffusion process. When evaluating the electrochemical properties of as-prepared TiO2–S composite as cathode materials in lithium–sulfur batteries, it exhibits much improved cyclical stability and high rate performance. The results showed that an initial discharge specific capacity of 1,460 mAh/g at 0.2 C and capacity retention ratio of 46.6 % over 100 cycles of composite cathode, which are higher than that of pristine sulfur. The improvements of electrochemical performances were due to the good dispersion of sulfur in the pores of TiO2 particles and the excellent adsorbing effect on polysulfides of TiO2.  相似文献   

10.
This paper describes a simple setup using a thin, insulated platinum wire as an in situ electrochemical probe for analysis of the soluble polysulfide intermediates formed and consumed during the course of the discharge process of a lithium–sulfur cell. The probe, sharing common reference and counter electrodes with the cell, can be used to follow the changes in concentration of polysulfides in the electrolyte. The results herein both support and complement more advanced techniques studied elsewhere for understanding the dominant processes occurring in the cell.  相似文献   

11.
Peng  Tao  Zhang  Ning  Wang  Yangbo  Zhao  Menglong  Sun  Weiwei  Zhang  Deyang  Yan  Hailong  Lu  Yang  Luo  Yongsong 《Journal of Solid State Electrochemistry》2021,25(2):505-512
Journal of Solid State Electrochemistry - Lithium–sulfur (Li–S) battery is one of the most promising energy storage systems for its ultrahigh theoretical capacity of 2600 Wh kg−1....  相似文献   

12.
Wu  Xiaochen  Yang  Qi  Huang  Wenlong  Na  Ren  Yu  Yu  Liu  Huitian  Liu  Xu  Liu  Yuansheng  Cao  Yuhao  Shan  Zhongqiang 《Journal of Solid State Electrochemistry》2022,26(5):1201-1210
Journal of Solid State Electrochemistry - Physical confinement through particular nanostructures is inadequate to avoid the shuttle effect in the lithium–sulfur batteries. Electrocatalysts...  相似文献   

13.
To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P_4S_(10) modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the main constituents of the protective layer were P_4S_(10), Li_3PS_4 and other LixPySztype derivatives. The protective layer was proved to be effective to stabilize the interphase of lithium metal. With the modified Li anodes, symmetric cells could deliver stable Li plating/stripping for 16000 h; Li–S batteries exhibited a specific capacity of 520 m A h g~(-1) after 200 cycles at 1000 m A g~(-1) with average Coulombic efficiency of 97.9%. Therefore, introducing LixPySzbased layer to protect Li anode provides a new strategy for the improvement of Li metal batteries.  相似文献   

14.
A study of the electrochemical behavior of LiMnPO4 prepared by RAPET method in different aqueous electrolytes using cyclic voltammetry (CV), galvanostatic charge–discharge experiments, and electrochemical impedance spectroscopy is reported. CV peak current is proportional to the square root of scan rate under 0.2 mV s−1. The system satisfied the required conditions for a reversible system with a resistive behavior. LiMnPO4 was found to undergo proton insertion at lower concentrations of electrolyte. At higher concentrations or saturated solutions of electrolytes, lithium insertion/de-insertion becomes the main reaction though the effect of proton insertion/de-insertion reaction cannot be ignored. Electrochemical insertion/de-insertion of lithium in LiMnPO4 was studied using EIS technique. The kinetic parameter, charge transfer resistance (R ct), obtained by simulating the experimental impedance data with an equivalent circuit showed a minimum at the potential close to the CV peak potential. The cell LiTi2(PO4)3/5 M LiNO3/LiMnPO4 delivers a discharge capacity of 84 mAh g−1 in the first cycle at an applied current of 0.2 mA cm−2 and it retains its initial capacity over 50 cycles with good rate capability.  相似文献   

15.
Lithium–sulfur(Li–S) batteries have been regarded as a promising next-generation energy storage system owing to the high theoretical energy density and natural abundance of sulfur. Abundant fundamental researches have pushed the flourishing development on electrochemical behaviors in recent 20 years. It is time to evolve into post-Li–S battery era with the pursuit towards practical application. During the landmark leap, numerous new challenges appear under harsh conditions, such as high sulfur l...  相似文献   

16.
Lithium–sulfur(Li–S)batteries are being explored as promising advanced energy storage systems due to their ultra-high energy density.However,fast capacity fading and low coulombic efficiency,resulting from the dissolution of polysulfides,remain a serious challenge.Compared to weak physical adsorptions or barriers,chemical confinement based on strong chemical interaction is a more effective approach to address the shuttle issue.Herein,we devise a novel polymeric sulfur/carbon nanotube composite for Li–S battery,for which 2,5-dithiobiurea is chosen as the stabilizer of long-chain sulfur.This offers chemical bonds which bridge the polymeric sulfur and carbon nanotubes.The obtained composite can deliver an ultra-high reversible capacity of 1076.2 m Ah g~(-1)(based on the entire composite)at the rate of 0.1 C with an exceptional initial Coulombic efficiency of 96.2%,as well as remarkable cycle performance.This performance is mainly attributed to the reaction reversibility of the obtained polymeric sulfur-based composite during the discharge/charge process.This was confirmed by density functional theory calculations for the first time.  相似文献   

17.
Zhang  Xuqing  Xie  Dong  Wang  Donghuang  Yang  Tao  Wang  Xiuli  Xia  Xinhui  Gu  Changdong  Tu  Jiangping 《Journal of Solid State Electrochemistry》2017,21(4):1203-1210
Journal of Solid State Electrochemistry - Smart construction of advanced sulfur cathodes is indispensable for the development of high performance lithium–sulfur (Li–S) batteries. Hence,...  相似文献   

18.
《中国化学快报》2022,33(10):4421-4427
Lithium–sulfur (Li–S) batteries exhibit outstanding energy density and material sustainability. Enormous effects have been devoted to the sulfur cathode to address redox kinetics and polysulfide intermediates shuttle. Recent attentions are gradually turning to the protection of the lithium metal anodes, since electrochemical performances of Li–S batteries are closely linked to the working efficiency of the anode side, especially in pouch cells that adopt stringent test protocols. This Perspective article summarizes critical issues encountered in the lithium metal anode, and outlines possible solutions to achieve efficient working lithium anode in Li–S batteries. The lithium metal anode in Li–S batteries shares the common failure mechanisms of volume fluctuation, nonuniform lithium flux, electrolyte corrosion and lithium pulverization occurring in lithium metal batteries with oxide cathodes, and also experiences unique polysulfide corrosion and massive lithium accumulation. These issues can be partially addressed by developing three-dimensional scaffold, exerting quasi-solid reaction, tailoring native solid electrolyte interphase (SEI) and designing artificial SEI. The practical evaluation of Li–S batteries highlights the importance of pouch cell platform, which is distinguished from coin-type cells in terms of lean electrolyte-to-sulfur ratio, thin lithium foil, as well as sizable total capacity and current that are loaded on pouch cells. This Perspective underlines the development of practically efficient working lithium metal anode in Li–S batteries.  相似文献   

19.
Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellent conductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon(HPNC) via a combination of salt template(ZnCl_2) and hard template(SiO_2) as sulfur host for lithium–sulfur batteries. The low-melting ZnCl_2 is boiled off and leaves behind micropores and small size mesopores during pyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3D network of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g~(–1) at 0.1 C(1 C = 1675 m Ah g~(–1)), a high-rate capability of 623 m Ah g~(–1) at 2 C, and a small decay of 0.13% per cycle over 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-S electrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfide as well as the nitrogen doping for high absorbability of lithium polysulfide.  相似文献   

20.
《中国化学快报》2023,34(11):108263
The sluggish conversion kinetics and shuttle effect of lithium polysulfides (LiPSs) severely hamper the commercialization of lithium–sulfur batteries. Numerous electrocatalysts have been used to address these issues, amongst which, transition metal dichalcogenides have shown excellent catalytic performance in the study of lithium–sulfur batteries. Note that dichalcogenides in different phases have different catalytic properties, and such catalytic materials in different phases have a prominent impact on the performance of lithium–sulfur batteries. Herein, 1T-phase rich MoSe2 (T-MoSe2) nanosheets are synthesized and used to catalyze the conversion of LiPSs. Compared with the 2H-phase rich MoSe2 (H-MoSe2) nanosheets, the T-MoSe2 nanosheets significantly accelerate the liquid phase transformation of LiPSs and the nucleation process of Li2S. In-situ Raman and X-ray photoelectron spectroscopy (XPS) find that T-MoSe2 effectively captures LiPSs through the formation of Mo-S and Li-Se bonds, and simultaneously achieves fast catalytic conversion of LiPSs. The lithium–sulfur batteries with T-MoSe2 functionalized separators display a fantastic rate performance of 770.1 mAh/g at 3 C and wonderful cycling stability, with a capacity decay rate as low as 0.065% during 400 cycles at 1 C. This work offers a novel perspective for the rational design of selenide electrocatalysts in lithium–sulfur chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号