首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We report on the electrochemical synthesis of free‐standing aluminium nanowire architectures through a template‐assisted electrodeposition technique. For this purpose, nuclear track‐etched polycarbonate membranes were employed as templates. One side of the template was sputtered with a thin gold film to serve as a working electrode. Subsequently the nanowires were made in the ionic liquid 1‐ethyl‐3‐methylimidazolium chloride ([EMIm]Cl)/AlCl3 (40/60 mol %) under potentiostatic conditions. Two different electrodeposition procedures were employed to fabricate strongly adherent Al nanowire structures on an electrodeposited Al layer. In the first procedure, electrodeposition simultaneously occurs along the pores of the template and on the Au‐sputtered side of the template. In the second procedure, electrodeposition takes place in two different steps: first a thick supporting film of Al is deposited on the sputtered side of the membrane and second Al nanowires are grown within the pores. After chemical dissolution of the membrane in dichloromethane, an aluminium foil of a controlled thickness with a three‐dimensional nanowire structure on one side was obtained. Different nanowire architectures, such as free‐standing nanowires, vertically aligned tree‐shaped arrays, and bunched nanowire films, were obtained. Such nanowire architectures are of particular interest for applications in Li‐ion micro‐batteries.  相似文献   

2.
In the present paper, we report on the electrodeposition of aluminium, zinc and platinum on silver-coated textile fibres from ionic liquids. For electrodeposition of Al, the 60:40 mol% mixture of AlCl3/1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) and 1.7 M AlCl3 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSA) were employed. It was observed that microcrystalline aluminium was electrodeposited on the textile fibres in 60:40 mol% AlCl3/[EMIm]Cl. The deposited Al layers either on single fibres or on textile assemblies are well adherent and uniform. An adherent, homogeneous and nanocrystalline Al layer was obtained on the silver-coated textile samples from 1.7 M AlCl3/[Py1,4]TFSA at 75 °C. The obtained Al layers from 60:40 mol% AlCl3/[EMIm]Cl on the textile fibres exhibit a good corrosion resistance in an aqueous iodide/iodine electrolyte. Furthermore, we obtain Al microtubes from the investigated ionic liquids after dissolving the textile fibres. In addition, zinc electrodeposition was carried out on the textile samples from 60:40 mol% ZnCl2/[EMIm]Cl at 80 °C. The electrodeposition of platinum on the textiles was done from 50 mM PtCl2 in 1-butyl-1-methylpyrrolidinium dicyanamide ([Py1,4]DCA).  相似文献   

3.
We report on the electrochemical synthesis of macroporous films and on nanowire architectures of conducting polymers from ionic liquids. The electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) and of poly(para-phenylene) (PPP) from the air and water stable ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]TFSA) and from 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIm]FAP) within the voids of a polystyrene opal structure on gold and on platinum substrates yield macroporous films. For this purpose, polystyrene spheres with an average diameter of about 600?nm were applied onto the employed electrodes by a simple dipping process resulting in a layer thickness of about 10?μm. The macroporous films turn into yellow, orange, blue, and green colors owing to the Bragg reflection of the incident artificial white light. PPP and PEDOT nanowires were electrochemically prepared in a track-etched polycarbonate (PC) membrane with an average pore diameter of 90?nm. One side of the membrane was sputtered with a thin gold film to serve as a working electrode. Electrodeposition occurs along the pores of the template. Nanowires with an average diameter of 90?nm and a length of up to 17?μm can be easily synthesized by this electrochemical template-assisted method. Such materials are of interest as catalyst in metal/air batteries and as cathode material in, e.g., microbatteries.  相似文献   

4.
The electrodeposition of Zn on Au(111) was investigated with cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) in the air and water stable ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate ([EMIm]TfO) with a Zn(TfO)2 concentration of 0.2 M. It has been found that the structure [EMIm]TfO/Au(111) is very complex. Furthermore, the addition of Zn(TfO)2 changes the interfacial structure significantly. The first STM-probed Zn islands appear at +0.3 V, and their growth leads to the formation of a thin zinc layer. A bulk deposition of Zn is obtained with in situ STM at ?0.1 V. Furthermore, in situ STM reveals that the deposition of Zn is accompanied by the formation of Au-Zn surface alloys.  相似文献   

5.
In order to deepen the understanding of the cation-anion interaction in ionic liquids, the structures of cation, anions, and cation-anion ion-pairs of 1-allyl-3-methylimidazolium-based ionic liquids are optimized using density functional theory (DFT), and their most stable geometries are discussed. The structural parameters, hydrogen bonds and interaction energies of 1-allyl-3-methylimidazolium dicyanamide ([Amim]DCA), 1-allyl-3-methylimidazolium chloride ([Amim]Cl), 1-allyl-3-methylimidazolium formate ([Amim]FmO) and 1-allyl-3-methylimidazolium acetate ([Amim]AcO) ion pairs are studied. The vibrational frequencies of [Amim]DCA and [Amim]Cl have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes.  相似文献   

6.
The present work shows, for the first time, a comparative experimental study on the electrodeposition of aluminium in three different water and air stable ionic liquids, namely 1-butyl-1-methylpyrrolidinium-bis(trifluoromethylsulfonyl)imide ([BMP]Tf2N), 1-ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide ([EMIm] Tf2N), and trihexyl-tetradecyl-phosphoniumbis(trifluoromethylsulfonyl)imide (P(14,6,6,6) Tf2N). The ionic liquids [BMP]Tf2N and [EMIm]Tf2N show biphasic behaviour in the AlCl3 concentration range from 1.6 to 2.5 mol L(-1) and 2.5 to 5 mol L(-1), respectively. The biphasic mixtures become monophasic at temperatures >/=80 degrees C. It was found that nanocrystalline aluminium can be electrodeposited in the ionic liquid [BMP]Tf2N saturated with AlCl3. The deposits obtained are generally uniform, dense, shining, and adherent with very fine crystallites in the nanometer size regime. However, coarse cubic-shaped aluminium particles in the micrometer range are obtained in the ionic liquid [EMIm]Tf2N. In this liquid the particle size significantly increases as the temperature rises. A very thin, mirrorlike aluminium film containing very fine crystallites of about 20 nm is obtained in the ionic liquid [trihexyl-tetradecyl-phosphonium]Tf(2)N at room temperature. At 150 degrees C, the average grain size is found to be 35 nm.  相似文献   

7.
Successful electrodeposition of aluminium from ionic liquids has been long achieved scientifically. Nevertheless, standard industrial procedures have not yet been established due to the difficulties associated with using closed system filled with inert gas for the electrodeposition process. This paper presents a new methodology in which electrodeposition of aluminium is conducted in air, after preparation of ionic liquids in a glove box and covering them by a nonwater-absorbable layer of particular organic compound. This compound is stable and shows no reaction with the ionic liquid. Using this new methodology, functional aluminium layers were successfully deposited from a first generation ionic liquid AlCl3/1-ethyl-3-methylimidazolium chloride – [EMIm]Cl – (60/40 mol%) on low carbon steel. Cyclic voltammetry (CV) measurements revealed that there was no significant difference in electrochemical properties characteristic of Al deposition when conducted in open air. SEM/EDX assessments showed that uniform, dense and adherent Al layers were obtained. Adherence of Al to the steel substrate was improved via in-situ electrochemical etching.  相似文献   

8.
Template two step electrodeposition method and atomic layer deposition were used to synthesize copper nanowires of varied length (1.2 to 26.2 μm) and copper nanowires coated with titanium dioxide. As a result of the atomic layer deposition of TiO2, coated nanowires demonstrated an up to 10-fold decrease in the wetting angle, compared with uncoated nanowires. It was found the dissipation rate is substantially higher for nanowires coated by the atomic layer deposition method (100 s) as compared with the uncoated copper nanowires (400 s), which assumes the positive properties of water propagation along the surface, necessary for improving the heat transfer. It was also found that the water contact angle for uncoated nanowires and those coated with TiO2 by the atomic layer deposition (ALD) gradually increases as the samples are kept in air. A gradual increase in wettability was also observed for smooth silicon wafers coated by ALD of TiO2, which were exposed to air. On the coated silicon substrates, the wetting angle gradually increased from 10° to approximately 56° in the course of four days. In addition, it was shown that copper nanowires coated with TiO2 by the atomic layer deposition method have an excellent corrosion resistance, compared with uncoated nanowires, when brought in contact with air and water.  相似文献   

9.
In this letter we show that nanocrystalline aluminium can be electrodeposited in the Lewis acidic ionic liquid based on AlCl3 (60 mol%) and 1-(2-methoxyethyl)-3-methylimidazolium chloride ([MoeMIm]Cl) (40 mol%). The study comprised cyclic voltammetry, potentiostatic polarization, and SEM and XRD measurements. The methoxy group in the side chain of the imidazolium cation significantly influences the electrodeposition pathway of Al in comparison to [EMIm]Cl/AlCl3. Cyclic voltammetry shows a significant current loop attributed to nucleation. Shiny Al layers are obtained with an average crystallite size of about 40 nm.  相似文献   

10.
The objective of this work was to explore the feasibility of using ionic liquids (ILs), namely N-ethyl-N-methylmorpholinium dicyanamide, [EMMor][DCA], (3-hydroxypropyl)-1-methylmorpholinium dicyanamide, [N-C3OHMMor][DCA], 1-(3-hydroxypropyl)-3-methylimidazolium dicyanamide, [N-C3OHMIM][DCA], 1-(3-hydroxypropyl)pyridinium dicyanamide, [N-C3OHPy][DCA], (3-cyanopropyl)pyridinium dicyanamide, [N-C3CNPy][DCA], and (3-cyanopropyl)methylpyrrolidinium dicyanamide, [N-C3CNMPyr][DCA] for the separation of ethylbenzene and styrene. The liquid–liquid equilibrium (LLE) data in ternary systems of {IL (1)?+?styrene (2)?+?ethylbenzene (3)} at T?=?298.15 K and ambient pressure is presented for the six ILs synthesized by us. The final chromatography analysis of the composition of tie-lines has shown that the studied ILs are not found in the raffinate phase and they show interesting results on the selectivity and solute distribution ratio for styrene extraction. A comparison of different ILs is presented for the studied separation problem. It was observed that the best separation selectivities were found for [N-C3CNPy][DCA] (SAv?=?2.38) and [N-C3OHMMor][DCA] (SAv?=?2.42) in comparison with other studied ILs in this work and those presented in the literature. While the data presented here are useful from a theoretical standpoint, the possibility of applications for these ILs in technological processes is questionable because of low solute distribution ratios, especially those calculated from the masses [N-C3CNPy][DCA] (βMAv?=?0.08) and [N-C3OHMMor][DCA] (βMAv?=?0.07). The experimental tie-lines were correlated with the non-random two liquid NRTL model.  相似文献   

11.
The electrochemical synthesis of gallium nanostructures in an ionic liquid is presented. Gallium nanowires and macroporous structures were synthesized by the template-assisted electrodeposition in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py(1,4)]TFSA) containing GaCl(3) as the precursor. Track-etched polycarbonate membranes with an average pore diameter of 90 nm and a thickness of 21 μm were used as templates for the nanowire synthesis. Ga nanowires with a length of more than 4 μm and an average diameter corresponding to that of the template's pores were easily obtained by this method. Macroporous structures with an average pore diameter of 600 nm were obtained by the electrochemical deposition of Ga inside polystyrene colloidal crystal templates and the subsequent removal of the template by THF. The macroporous deposit showed a granular morphology with smallest grain sizes of about 40 nm and light reflections. The nanostructures of Ga were characterized by HR-SEM and EDX analysis.  相似文献   

12.
A set of new tunable aryl alkyl ionic liquids (TAAILs) based on the 1-aryl-3-alkyl imidazolium motif has been synthesized, in which the following variables were systematically changed: alkyl chain length, aryl substitution (group and position), and counter ion. TAAILs with dicyanamide (DCA) and bis(trifluoromethylsulfonyl)imide (N(SO2CF3)2, NTf2) anions showed remarkable differences of their physical properties: NTf2 ionic liquids were found to have high decomposition temperatures and viscosities well below those of the DCA TAAILs. In contrast, the dicyanamide anion increased the electrochemical stability leading to TAAILs with an extremely wide electrochemical window of up to 7.17 V. Additionally, both classes of TAAILs extract transition metals from aqueous solutions: TAAILs with the DCA anion extract both platinum and copper while TAAILs with the NTf2 anion are selective towards platinum. This demonstrates that minor changes of the molecular structure lead to TAAILs with drastically changed physicochemical properties.  相似文献   

13.
We describe an unconventional electrochemistry approach to the preparation of silver nanowires. By the electrodeposition in the dilute solution without supporting electrolyte, silver nanowires with diameter 10–50 nm and length up to several μm have been synthesized. It was found that the absence of the supporting electrolyte played a key role in the formation of silver nanowires, and the products from the solution without supporting electrolytes were very different from those with supporting electrolytes. A possible mechanism concerning the transportation of silver ions by electro-migration and the diffusion was proposed.  相似文献   

14.
Free-standing copper nanowires were synthesized by a chemical vapor deposition process at low substrate temperatures using Cu(etac)[P(OEt)3]2 as a precursor. The process requires neither templates nor catalysts to produce copper nanowires of 70-100 nm in diameter, which exhibited high purity and crystallinity with [111] orientation. The grain structures of the films deposited from a series of Cu(I) alkyl 3-oxobutanoate complexes indicated that the high precursor stability was responsible for the columnar growth of the grains, which was evolved to the nanowires eventually.  相似文献   

15.
本工作采用直接在铜箔表面恒电流电沉积的方法制备Sn负极,以NiCl2为沉积电解液的添加剂得到了Sn空心管,提高了单纯Sn负极的可逆比容量,60次循环后仍剩余184.3 mAh·g-1。进一步引入聚吡咯进行表面修饰改性,有效地提高了沉积电极的电化学循环性能,60次循环后仍剩余440.6 mAh·g-1可逆比容量,同时具备良好的循环稳定性。沉积电极可直接用作锂离子电池负极,无需任何粘结剂,电极装配操作简单。  相似文献   

16.
本工作采用直接在铜箔表面恒电流电沉积的方法制备Sn负极,以NiCl2为沉积电解液的添加剂得到了Sn空心管,提高了单纯Sn负极的可逆比容量,60次循环后仍剩余184.3 mAh·g-1。进一步引入聚吡咯进行表面修饰改性,有效地提高了沉积电极的电化学循环性能,60次循环后仍剩余440.6 mAh·g-1可逆比容量,同时具备良好的循环稳定性。沉积电极可直接用作锂离子电池负极,无需任何粘结剂,电极装配操作简单。  相似文献   

17.
The orientation of the cation and the anion of room-temperature ionic liquids using sum frequency generation vibrational spectroscopy is reported. The ionic liquids are based on butyl-methyl imidazolium [BMIM]+ and hexyl-tributyl ammonium [N6444]+ together with dicyanamide [DCA]- as the anion. The tilt angle of the C3 axis of the methyl group from the alkyl chain in the cations was found to vary from 52 degrees to 80 degrees as a function of the distribution width sigma (which ranges from 0 degrees to 30 degrees with respect to the surface normal) for [BMIM][DCA] and similarly for [N6444][DCA]. The orientation of the C2 axis in the dicyanamide anion as a function of the twist angle phi, varied between 46 degrees and 90 degrees for [BMIM][DCA] and from 53 degrees to 90 degrees for [N6444][DCA]. These results suggest the presence of both ionic species at the gas-liquid interface and help describe the behavior of a simple inorganic anion at the surface.  相似文献   

18.
The ability to electrodeposit titanium at low temperatures would be an important breakthrough for making corrosion resistant layers on a variety of technically important materials. Ionic liquids have often been considered as suitable solvents for the electrodeposition of titanium. In the present paper we have extensively investigated whether titanium can be electrodeposited from its halides (TiCl(4), TiF(4), TiI(4)) in different ionic liquids, namely1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]Tf(2)N), 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)amide ([BMP]Tf(2)N), and trihexyltetradecyl-phosphonium bis(trifluoromethylsulfonyl)amide ([P(14,6,6,6)]Tf(2)N). Cyclic voltammetry and EQCM measurements show that, instead of elemental Ti, only non-stoichiometric halides are formed, for example with average stoichiometries of TiCl(0.2), TiCl(0.5) and TiCl(1.1). In situ STM measurements show that-in the best case-an ultrathin layer of Ti or TiCl(x) with thickness below 1 nm can be obtained. In addition, results from both electrochemical and chemical reduction experiments of TiCl(4) in a number of these ionic liquids support the formation of insoluble titanium cation-chloride complex species often involving the solvent. Solubility studies suggest that TiCl(3) and, particularly, TiCl(2) have very limited solubility in these Tf(2)N based ionic liquids. Therefore it does not appear possible to reduce Ti(4+) completely to the metal in the presence of chloride. Successful deposition processing for titanium in ionic liquids will require different maybe tailor-made titanium precursors that avoid these problems.  相似文献   

19.

Assembly of Sn on Cu Nanorods as anode for Li-ion microbatteries was prepared by a two-step electrodeposition design. Firstly, Cu nanorods arrays were grown on copper substrate by anodic aluminum oxide template-assisted growth method. Then, Sn was deposited onto Cu nanorods arrays by galvanostatic deposition. X-ray diffraction and scanning electron microscopy measurements reveal that Cu nanorod arrays are covered with Sn. Electrochemical performances of prepared electrodes were evaluated by charge/discharge cycle measurement. The assembly of Sn on Cu nanorods electrode exhibited highly reversible specific capacity and superior capacity retention resulting from the three-dimensionally nano-architectured design, which exhibits a large surface area, shortened Li-ion diffusion distance, Cu–Sn alloying, and can accommodate the volume expansion of Sn during cycling. Deposition time is an important parameter for fabricating the assembly of Sn on Cu nanorods electrode with suitable structure and morphology.

  相似文献   

20.
When the dimension of materials decreases to mesoscale, their properties can change dramatically, depending on the boundary conditions imposed by the sample architecture including geometry, morphology, and hierarchical structures. Here we show that electrodeposition, a method for reducing materials from a solution onto a substrate, can provide a versatile pathway to tailor the architecture of mesostructures. Novel lead (Pb) structures ranging from nanowires, mesoparticles with octahedral, decahedral, and icosahedral shapes to porous nanowires, multipods, nanobrushes, and even snowflake-shaped structures were synthesized through systematically exploring electrodeposition parameters including reduction potentials, solution concentration, starting materials, supporting electrolytes, and surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号