共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligoproline chiral stationary phase (CSP) is a new class peptide chiral stationary phase. Many proline chiral stationary phases with different proline chain lengths and linkers have been prepared and evaluated. However, the doubly tethered and ionic type linkers have not been adequately investigated. In this study, covalently and ionically bonded chiral stationary phases with doubly tethered linker were prepared and characterized. The new covalently bonded doubly tethered diproline CSP was applied successfully to resolve various enantiomers of acidic, basic, and neutral compounds with phenyl, naphthyl, anthryl, or similarly sized groups. The enantiorecognition performances of singly and doubly tethered diproline CSPs were comparable. Variation of the type and content of organic modifiers in hexane or heptane mobile phase showed that the branch alcohols such as 2‐propanol and 2‐butanol, 1,2‐dichloroethane, methyl tert‐butyl ether, and ethyl acetate in the mobile phase enhanced chiral separation. End‐capping on doubly tethered diproline CSP did not always improve the separation factor and resolution. Due to the rigid structure of the double tether, the enantioseparation ability of ionically bonded diproline CSP was well expressed to some analytes. 相似文献
2.
Ethoxynonafluorobutane (ENFB) has been used as a component of new biphasic solvent mixtures. The suitability of several mixtures as solvent systems in countercurrent chromatography was tested. The applicability of the ENFB/2-PrOH/H2O mixture to the separation of enantiomers, in combination with a fluorinated chiral selector (CS), was evaluated. N-Perfluoroundecanoyl-l-proline-3,5-dimethylanilide (2), analogous to the previously used N-dodecyl-l-proline-3,5-dimethylanilide (1), was synthesized for this purpose. The capacity of the new solvent system to retain the fluorinated CS in the fluorinated phase used as stationary was examined. Chiral selector 1 was applied in analogous conditions for comparative purposes. Additionally, MTBE/phosphate buffer solvent system was also used with the two CSs. The ENFB/2-PrOH/H2O (25:35:40) mixture was found to be adequate in the enantioseparation of DNB-Leu and DNB-Leu-tBu. Enantioselectivity was maintained in the fluorinated solvent system without compromising eluting time. The complete separation of DNB-Leu-tBu was achieved and no leaks of CS to the mobile phase were detected. 相似文献
3.
4.
Sheng-Ming Xie Jun-Hui Zhang Nan Fu Bang-Jin Wang Ling Chen Li-Ming Yuan 《Analytica chimica acta》2016
Molecular organic cages as shape-persistent organic molecules with permanent and accessible cavities have attracted a lot of interest because of their importance as host-guest systems. Herein, we report a chiral porous organic cage (POC) CC9 diluted with a polysiloxane OV-1701 to fabricate a CC9-coated capillary column, which was used for the high-resolution gas chromatographic separation of organic compounds, including positional isomers and racemates. On the CC9-coated capillary column, a large number of racemic compounds such as chiral alcohols, esters, ethers and epoxides can be resolved without derivatization. By comparing the chiral recognition ability of the CC9-coated column with the commercially available β-DEX 120 column and the POC CC3-R coated column recently reported by our group, the CC9-coated column offered good resolution during the separation of some racemates, that were not separated using the β-DEX 120 column or POC CC3-R coated column. Therefore, the CC9-coated column can be complementary to the β-DEX 120 column and CC3-R coated column. The results indicated that the CC9-coated column exhibited great potential for application in the separation of positional isomers and enantiomers with great selectivity, high resolution and good reproducibility. 相似文献
5.
Francesco Gasparrini Francesco Maggio Domenico Misiti Claudio Villani Franca Andreolini Gian Pietro Mapelli 《Journal of separation science》1994,17(1):43-45
Fast and efficient separations of chiral stereolabile compounds were obtained at very low temperature on a π-acid chiral stationary phase (R,R-DACH-DNB) using carbon dioxide-based mobile phases containing alcoholic polar modifiers. Furthermore, efficient separations of the newly discovered spherical carbon cluster buckminsterfullerene (C60) and the related higher fullerenes (C70, etc.) have been performed on the same stationary phase using eluents based on either n-hexane or carbon dioxide. 相似文献
6.
W. Lee 《Chromatographia》2000,53(3-4):156-158
Summary The liquid-chromatographic separation of the enantiomers of pyrethroic acids and their esters has been investigated on a polysaccharide-derived
chiral stationary phase (CSP), Chiralpak AS. Good separation of the enantiomers of underivatized pyrethroic acids was achieved
on the column, and the enantiomers of pyrethroic acid methyl and ethyl ester derivatives were also resolved. 相似文献
7.
The separation of enantiomers by chromatographic methods, such as gas chromatography, high‐performance liquid chromatography and capillary electrochromatography, has become an increasingly significant challenge over the past few decades due to the demand of pharmaceutical, agrochemical, and food analysis. Among these chromatographic resolution methods, high‐performance liquid chromatography based on chiral stationary phases has become the most popular and effective method used for the analytical and preparative separation of optically active compounds. This review mainly focuses on the recent development trends for novel chiral stationary phases based on chitosan derivatives, cyclofructan derivatives, and chiral porous materials that include metal‐organic frameworks and covalent organic frameworks in high‐performance liquid chromatography. The enantioseparation performance and chiral recognition mechanisms of these newly developed chiral selectors toward enantiomers are discussed in detail. 相似文献
8.
高效液相色谱使用两种类型的纤维素-三(对甲基苯甲酸酯)固定相手性拆分非洛地平的比较 总被引:1,自引:0,他引:1
以高效液相色谱手性固定相法对非洛地平(FEL)进行手性拆分。分别采用两种类型的纤维素-三(对甲基苯甲酸酯)手性柱Chiralcel OJ-R和Chiralcel OJ-H进行比较实验,以正己烷-异丙醇(90:10, v/v)为流动相,考察了流动相、柱温对保留及手性拆分的影响。实验显示,两柱拆分FEL的van’t Hoff图均发生了转折,在高温区域为焓驱动,在低温区域为熵驱动。两柱在温度升高时拆分FEL的分离度均提高,其中OJ-H的分离度优于OJ-R。两种手性柱对FEL具有相似的拆分机理。 相似文献
9.
10.
Enantioseparation of chiral sulfonates by liquid chromatography and subcritical fluid chromatography
Tert‐butylcarbamoyl‐quinine and ‐quinidine weak anion‐exchange chiral stationary phases (Chiralpak® QN‐AX and QD‐AX) have been applied for the separation of sodium β‐ketosulfonates, such as sodium chalconesulfonates and derivatives thereof. The influence of type and amount of co‐ and counterions on retention and enantioresolution was investigated using polar organic mobile phases. Both columns exhibited remarkable enantiodiscrimination properties for the investigated test solutes, in which the quinidine‐based column showed better enantioselectivity and slightly stronger retention for all analytes compared to the quinine‐derived chiral stationary phase. With an optimized mobile phase (MeOH, 50 mM HOAc, 25 mM NH3), 12 of 13 chiral sulfonates could be baseline separated within 8 min using the quinidine‐derivatized column. Furthermore, subcritical fluid chromatography (SubFC) mode with a CO2‐based mobile phase using a buffered methanolic modifier was compared to HPLC. Generally, SubFC exhibited slightly inferior enantioselectivities and lower elution power but also provided unique baseline resolution for one compound. 相似文献
11.
12.
Two novel chiral stationary phases (CSPs) were prepared by bonding chiral imidazoliums on the surface of silica gel. The chiral imidazoles were derivatized from chiral amines, 1-phenylethylamine and 1-(1-naphthyl)ethylamine. The obtained CSPs were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis (EA), demonstrating the bonding densities of CSP 1 and CSP 2 were 0.43 mmol g−1 and 0.40 mmol g−1, respectively. These two CSPs could be used to availably separate 8 pharmaceuticals, 7 mandelic acid/its derivatives, 2 1-phenylethylamine derivatives, 1 1,1′-bi-2-naphthol, and 1 camphorsulfonic acid in high-performance liquid chromatography (HPLC). It is found that CSP 1 could effectively enantioseparate most chiral analytes, especially the acidic components, while CSP 2 could enantiorecognize all chiral analytes, although a number of components did not achieve baseline separation. Additionally, the effects of mobile phase composition, mobile phase pH and salt content, chiral selector structures, and analyte structures on the enantiorecognitions of the two CSPs were investigated. It is found that high acetonitrile content in mobile phases was conducive to enantiorecognition. Mobile phase pH and salt content could alter the retention behaviors of different enantiomers of the same chiral compound, resulting in better enantioresolution. Moreover, both chiral selector structures and substituted groups of analytes played a significant role in the separation of chiral solutes. 相似文献
13.
Two covalently bonded cationic β-CD chiral stationary phases (CSPs) prepared by graft polymerization of 6A-(3-vinylimidazolium)-6-deoxyperphenylcarbamate-β-cyclodextrin chloride or 6A-(N,N-allylmethylammonium)-6-deoxyperphenylcarbamoyl-β-cyclodextrin chloride onto silica gel were successfully applied in high-performance liquid chromatography (HPLC). Their enantioseparation capability was examined with 12 racemic pharmaceuticals and 6 carboxylic acids. The results indicated that imidazolium-containing β-CD CSP afforded more favorable enantioseparations than that containing ammonium moiety under normal-phase HPLC. The cationic moiety on β-CD CSPs could form strong hydrogen bonding with analytes in normal-phase liquid chromatography (NPLC) to enhance the analytes’ retention and enantioseparations. In reversed-phase liquid chromatography (RPLC), the analytes exhibited their maximum retention when the pH of mobile phase was close to their pKa value. Inclusion complexation with CD cavity and columbic/ionic interactions with cationic substituent on the CD rim would afford accentuated retention and enantioseparations of the analytes. 相似文献
14.
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobilizing the polysaccharide and β-cyclodextrin derivatives onto inert silica gel carriers as chromatographic support. Over the past few years, new chiral selectors have been introduced, and progressive methods to prepare CSPs have been exploited. Also, chiral recognition mechanisms, which play a crucial role in the investigation of chiral separations, have been better elucidated. Further insights into the broad functional performance of commercially available chiral column materials and/or the respective newly developed chiral phase materials on enantiomeric separation (ES) have been gained. This review summarizes the recent developments in CSs, CSP preparation, chiral recognition mechanisms, and enantiomeric separation methods, based on polysaccharides and β-cyclodextrins as CSs, with a focus on the years 2019–2020 of this rapidly developing field. 相似文献
15.
16.
17.
高效液相色谱手性固定相法拆分阿折地平对映体 总被引:2,自引:0,他引:2
建立了阿折地平对映体的高效液相色谱拆分方法。采用Chiralpak AD-H (250 mm×4.6 mm, 5.0 μm, Daicel公司)手性色谱柱在正相条件下直接拆分阿折地平对映体,考察了固定相种类、流动相组成及柱温等对阿折地平对映体分离的影响。确定了最佳的拆分条件: 流动相为正己烷-异丙醇(90:10, v/v),流速为0.8 mL/min,检测波长为254 nm;柱温为20 ℃;在此条件下阿折地平对映体的分离度为3.3。该法简单快速,重现性好。 相似文献
18.
Enantioselectivity of chiral selectors is often relatively low in chiral HPLC. For difficult chiral separations, often only partial resolution is obtained rather quickly by column and mobile phase screening, and, by trial-and-error, additional method optimization is required to achieve complete resolution. This paper describes the development of a novel column-switching technique called "simulated moving columns" (SMC) to quickly achieve complete chiral resolution on columns with limited enantioselectivity. The simulated moving columns (SMC) technique uses two (2) or three (3) short chiral HPLC columns connected in series, and forces the unresolved enantiomers to recycle exclusively through the columns until sufficient resolution is attained. In effect, SMC helps to achieve chiral resolution by virtually multiplying the column length, thus enhancing separation efficiency and resolution, without increasing backpressure. Comparison of the standard non-SMC approach with SMC, and selected applications of chiral separations of pharmaceutical drug molecules are presented. Through measurement and calculation, evaluation of off-column band broadening resulting from a two-column SMC system is provided. The results clearly indicate that SMC eliminates the significant band broadening that is inevitable in the closed-loop recycling techniques currently used in preparative chromatography. Furthermore, SMC is not only useful to enhance resolution for analytical and preparative chiral separation, but also has great potential to enhance recovery and purity for difficult chiral preparative chromatography. 相似文献
19.
建立了新型抗抑郁药米那普仑在环糊精手性固定相上的高效液相色谱拆分方法。在反相色谱条件下采用未衍生化β-环糊精(Cyclobond I 2000)、乙酰基-β-环糊精(AC-β-CD)、2,3-二甲基-β-环糊精(DM-β-CD)、3,5-二甲基苯基氨基甲酸酯-β-环糊精(DMP-β-CD)4种手性柱分离米那普仑对映体。考察了固定相、流动相比例、pH、流速和柱温对拆分的影响。利用分子对接和结合能计算方法,研究米那普仑分子与AC-β-CD的对接过程,探讨其可能的分离机制。优化后的拆分条件如下:固定相为乙酰基-β-环糊精手性柱Astec CYCLOBONDTMI 2000 AC(25 cm×4.6 mm,5μm),流动相为乙腈-0.1%(体积分数)pH 5.0醋酸三乙胺溶液(TEAA)(5∶95,v/v),流速为0.4mL/min,柱温为25℃,检测波长为220 nm。在此条件下,米那普仑对映体获得快速拆分,分离度(Rs)为1.74,理论塔板数为10 125。分子模拟结果表明引起手性识别的作用力主要是环糊精衍生化的乙酰基导致的氢键作用差异。该方法快速、高效、重现性好。 相似文献
20.
Rui-Xue Liang Qi-Yu Ma Tuan-Xiu Xiang You-Ping Zhang Ya-Nan Gong Bin Huang Bang-Jin Wang Sheng-Ming Xie Jun-Hui Zhang Li-Ming Yuan 《Journal of separation science》2023,46(18):2300376
A chiral pillar[3]trianglimine (C60H72N6O6) with a deep cavity has been developed as a chiral selector and bonded to thiolated silica by thiol-ene click reaction to fabricate a novel chiral stationary phase for enantioseparation in high-performance liquid chromatography. The enantioseparation performance of the fabricated chiral stationary phase has been evaluated by separating various racemic compounds, including alcohols, esters, amines, ketones, amino acids, and epoxides, in both normal-phase and reversed-phase elution modes. In total, 14 and 17 racemates have been effectively separated in these two separation modes, respectively. In comparison with two widely used chiral columns (Chiralcel OD-H and Chiralpak AD-H), our novel chiral stationary phase offered good chiral separation complementarity, separating some of the tested racemates that could not be separated or were only partially separated on these two commercial columns. The influences of analyte mass, mobile phase composition, and column temperature on chiral separation have been investigated. Good repeatability, stability, and column-to-column reproducibility of the chiral stationary phase for enantioseparation have been observed. After the fabricated column had been eluted up to 400 times, the relative standard deviations (n = 5) of resolution (Rs) and retention time of the separated analytes were < 0.39% and < 0.20%, respectively. The relative standard deviations (n = 3) of Rs and retention time for column-to-column reproducibility were < 4.6% and < 5.2%, respectively. This study demonstrated that the new chiral stationary phase has great prospects for chiral separation in high-performance liquid chromatography. 相似文献