首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对价格昂贵的手性催化剂进行回收和重复利用是目前不对称催化领域面临的难题之一,受到学术界和工业界的共同关注。化学家们已经尝试了许多方法,其中使用离子液体来替代常规有机溶剂使催化剂得到分离和重新使用已经引起他们极大的兴趣。本文综述了近年来在离子液体中进行不对称催化反应的研究进展,对离子液体中过渡金属和有机小分子催化的各种反应进行重点介绍,强调了离子液体不但在催化剂回收方面有独特优势,而且在许多反应中能够提高催化效率。  相似文献   

2.
离子液体催化合成对羟基苯甲酸乙酯   总被引:1,自引:0,他引:1  
采用酸性离子液体[C3SO3 Hmim] HSO4、[C4SO3 Hmim] HSO4和[C3SO3 Hnhm] HSO4代替浓硫酸为催化剂合成对羟基苯甲酸乙醇.考察了反应温度、反应时间、催化剂用量、酸醇摩尔比对该反应产率的影响及离子液体的重复使用性能.选择了最佳反应条件,以[C3SO3 Hnhm] HSO4作为催化剂...  相似文献   

3.
巯基乙酸异辛酯是一种广泛应用于精细化工、树脂和塑料制造的中间体,尤其在聚氯乙烯无毒制品中有着重要用途[1],其合成方法的改进也成为研究的主要课题之一。巯基乙酸异辛酯的合成通常采用硫酸催化法[2],由于浓硫酸污染环境、腐蚀设备,特别是近年来环保法规对环境和安全性不断提高的要求,用固体酸(分子筛、离子交换树脂、固体超强酸)等取代H2SO4、HF、A lC l3等强腐蚀性酸作为催化剂的催化工艺获得明显进展[3],但这些催化剂也有自身的缺点[4]。室温离子液体是近年来受到极大关注的一类新材料,它为人们探索环境友好的催化体系和溶剂提供了…  相似文献   

4.
Three new protic ionic liquids based on 2-methylpyridinium were prepared and characterized. Their catalytic activities for the tert-butylation of phenol and the esterification of cyclic olefins with acetic acid were examined and satisfactory results were obtained over 2-methylpyridinium trifluoromethanesulfonate ([2-MPyH]OTf). Hammett method was used to determine the acidity order of these ionic liquids and the results are consistent with the catalytic activities observed in the acid-catalyzed probe reactions.  相似文献   

5.
6.
Applications of functionalized ionic liquids   总被引:2,自引:0,他引:2  
Recent developments of the synthesis and applications of functionalized ionic liquids (including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are at-tracting attention as alternative solvents in green chemistry, but as more functionalized ILs are pre-pared, a greater number of applications in increasingly diverse fields are found.  相似文献   

7.
功能化离子液体是将功能团弓l入到离子液体的阳离子或阴离子上,从而赋予离子液体某种特殊性质.将具有催化活性的基团弓I入到离子液体的阳离子或阴离子上所得到的功能化离子液体,是一类新型的催化材料.除了具有优异的催化性能,其特殊的物理化学性质很容易实现产物与催化剂的分离,正在许多重要催化过程中发挥作用.本文主要介绍近年来我们关于功能化离子液体的制备、性质及其在催化反应中的应用等研究,同时指出了目前存在的问题,并对今后发展趋势进行了展望.  相似文献   

8.
1 Introduction In undertaking the researches on ionic liquids, we wished to establish periodicity and draw a “map” of ionic liquids for providing definite guidance to dis-cover, design, and choose the proper ionic liquids to meet the specific applicatio…  相似文献   

9.
10.
11.
12.
13.
14.
Abstract

Task-specific ionic liquids (TSILs) have received increased attention over the past few years as it is possible to form any specific ionic liquid (IL) composition depending upon user's need of the desired physical, chemical, and biological properties. These fascinating materials have shown promising results in various areas such as organic synthesis, catalysis, and specially recent emerging trend of use as functionalized ILs for chiral and nanoparticle synthesis. Present review gives an update of recent developments in the field of TSILs with emphasis on their applications in organic synthesis.  相似文献   

15.
Metal nanoparticles (MNPs) with a small diameter and narrow size distribution can be prepared by H(2) reduction of metal compounds or decomposition of organometallic species dissolved in ionic liquids (ILs). MNPs dispersed in ILs are catalysts for reactions under multiphase conditions. These soluble MNPs possess a pronounced surfacelike rather than single-site like catalytic properties. In other cases the MNPs are not stable and tend to aggregate or serve as reservoirs of mononuclear catalytically active species.  相似文献   

16.
The application of room-temperature ionic liquids (RTILs) as (co)solvents and/or reagents is well documented. However, RTILS also have "nonsolvent" applications in biotransformations and organocatalysis. Examples are the anchoring of substrates to RTILs; ionic-liquid-coated enzymes (ILCE) and enzyme-IL colyophilization; the construction of biocatalytic ternary reaction systems; the combination of enzymes, RTILs, membranes, and (bio)electrochemistry; and ionic-liquid-supported organocatalysts. These strategies provide more robust, more efficient, and more enantioselective bio- and organocatalysts with many practical applications. As shown herein, RTILs offer a wide range of promising alternatives to conventional chemistry.  相似文献   

17.
18.
Ionic liquids and derivatives—mainly polymeric ionic liquids and magnetic ionic liquids—have been extensively used in microscale extraction over the past few years. Current trends in analytical sample preparation gear toward linking microextraction approaches with high‐throughput sample processing to comply with green analytical chemistry requirements. A variety of high sample throughput strategies that are coupled to both ionic‐liquid‐based solid‐phase microextraction and ionic liquid‐based liquid‐phase microextraction are herein reported. The review is focused on microscale extraction methods that use (i) custom‐made and dedicated extraction devices, (ii) parallel extraction, (iii) magnetic‐based separation, and (iv) miniaturized systems employing semi‐automatic or fully automatic flow injection methods, related micro/millifluidic devices, and robotic equipment.  相似文献   

19.
A type of Al-MCM-41 supported dual imidazolium ionic liquids nanocomposites have been synthesized and efficiently used as catalysts in the one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones. It was shown that the highest efficiency was achieved in the condensation of a range of aldehydes and anthranilamide in the presence of the (2)Al-MCM-41@ILCeCl4(0.5) solid catalyst under mild conditions. Hot filtration test confirmed that the reaction follows a heterogeneous pathway. Moreover, the catalyst was stable, very active, robust, and displayed good recyclability without significant loss of catalytic activity after five consecutive cycles during the process. Green reaction conditions, operational simplicity, feasibility, high to excellent yields, sustainability of the functionalized catalyst are the main highlights of the present protocol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号