首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model describing the roles of bound and unbound vacancies is proposed in order to predict defect decay and short-range-order kinetics of quenched binary alloys during linear heating experiments. This is an alternative treatment of a previous approach. The model has been applied to the differential scanning calorimetry (DSC) curves of Cu-5 at.% Zn quenched from different temperatures. An expression to calculate the activation energy for migration of solute-vacancy complexes was also developed which make use of DSC trace data. A value of 89.12±0.32 kJ mol-1 was obtained for the above alloy. The relative contribution of bound and unbound vacancies to partition of effective activation energy corresponding to the ordering process as influenced by quenching temperature was also assessed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A modified first-order kinetic law which takes into account defect decay during an ordering process was employed to predict the short-range-order kinetics of a quenched and a quenched-deformed Cu—5 at.% Zn alloy, in conjunction with experiments performed by isothermal calorimetry. The effective activation energy of point defect migration and its temperature dependence strongly suggest the contribution of bound vacancies to the ordering process. An estimate of 91.2 kJ mol–1 was made for the activation energy of solute—vacancy migration by applying an effective rate constant, a value in very good agreement with that obtained from previous non-isothermal experiments. The isothermal curves were utilized to determine the ordering energy: w=–2.90 kJ mol–1. In conjunction, a parametric study of the defect sink density was performed in order to assess its influence on the calculated isothermal curve profiles.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Summary The ordering behavior of quenched Cu-12 at% Mn was investigated by differential scanning calorimetry (DSC) under increasing temperature conditions. The ordering process can be better explained in terms of a homogeneous short-range-order (SRO) rather than a disperse-short-range-order (DSRO) model as for concentrated Cu-γMn solid solutions. At the employed high quench rates ordering is established in one stage here termed stage 1, assisted by excess vacancies. This stage obeys a first order kinetics law, being the effective activation energy consistent with a weighed average sum of the activation energy for migration of free and bound vacancies. An estimated solute-vacancy binding energy of 15 kJ mol-1 seems quite reasonable for this alloy together with the assessed activation energy for complex migration of 92.6 kJ mol-1. By adopting a first SRO order parameter based in quasi-chemical theory in pair approximation and using boundary values calculated from displayed features of DSC traces, the retained degree of quenched-in order at room temperature was calculated. This procedure also enabled to estimate an ordering energy of -2.7 kJ mol-1. The effect of quenching temperature demonstrate that for smaller vacancy sink densities, the retained degree of order at room temperature goes through a minimum.  相似文献   

4.
The kinetics short-range-order (SRO) in quenched Cu-30 at.% Zn, Cu-25 at. %Zn and Cu-20 at. %Zn was investigated by differential scanning calorimetry (DSC). It was evidenced a growing atomic mobility with increasing Zn content. From the DSC traces it is inferred that ordering is established in one stage, assisted by excess vacancies. As the quenching temperature increases considerable reordering occurs during cooling from the quenching temperature. The variation in the SRO non-isothermal behaviour with quenching temperature and composition is interpreted in terms of the atomic mobility and the degree of disorder together with the concentration of vacancies retained by quenching. Activation energies which control the mean life of vacancies and those which control the ordering rate were very similar, indicating that the mobility of vacancies is highly effective in generating SRO. Such activation energies are somewhat lower than the effective energies which control the kinetics of the process obtained from the DSC traces, suggesting that the presence of solute-vacancy complexes may be important as the Zn concentration increases. This feature was confirmed by an estimation of the solute-vacancy binding energy. It was also inferred that divacancy formation is unlikely in the alloys under study.  相似文献   

5.
Following a recently developed concept of MS binding assays based on the quantification of a native marker by LC–MS a procedure to study binding of a low-affinity marker in kinetic, saturation, and competition experiments was established. Separation of bound and unbound marker—the most crucial step of the assay—could be effectively achieved by filtration in a 96-well-format. MS binding assays according to this procedure allowed the reliable characterization of NO 711 binding to mGAT1 in presence of physiological NaCl concentrations. Comparing the results obtained in the present study with those from experiments using 1 mol L−1 NaCl in the incubation milieu reveals remarkable differences with respect to the marker’s affinity and kinetics and to the investigated test compound’s potency. Principle of MS binding assays After incubation of a target with a native marker, bound and unbound marker are separated by filtration. Subsequently, the bound native marker is liberated from the target and finally quantified by LC-MS-MS. Dedicated to Prof. Hans-Dietrich Stachel on the occasion of his 80th birthday  相似文献   

6.
In this research, non-isothermal combustion and kinetics of Silopi (Turkey) asphaltite samples were investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). A sample size of 10 mg, heating rates of 5, 10, 15 and 20°C min−1 were used in the temperature range of 20–600°C, under air atmosphere. Two reaction regions were observed in DSC curves. The first region is due to the evaporation of moisture in asphaltite sample whereas, release of volatile matter and burning of carbon is called the second region. A general computer program was developed and the results of four different kinetic models (Arrhenius, Coats-Redfern, Ingraham-Marrier and Horowitz-Metzger) are compared and discussed with regards to their accuracy and the ease of interpretation of the kinetics of thermal decomposition. In general similar activation energy values were obtained when the kinetic models are compared with each other. It was also observed that there was no general trend in the activation energy values from the point of heating rates.  相似文献   

7.
Equal channel angular pressing (ECAP) was carried out on solution annealed samples of Al–Mg–Si–Zr and Al–Mg–Si–Zr–Sc alloys to achieve a substantial grain refinement of the materials. Post ECAP aging was then investigated on the ultrafine grained alloys by DSC and TEM analyses. DSC scans were carried out with heating rates ranging from 5 to 30°C min–1. Peak identification was performed by the support of literature information and TEM analyses. Precipitation kinetics revealed to be similar for both alloys but the Sc-free alloy showed a recrystallization peak at temperatures ranging from 310 to 340°C, depending on the strain accumulated during ECAP. On the contrary, the Sc-containing alloy showed a greater grain stability. Analyses of peak positions and of activation energies as a function of ECAP passes experienced by the samples revealed large modifications of precipitation kinetics in the ultrafine-grained alloys with respect to the coarse-grained materials.  相似文献   

8.
In this research, non-isothermal kinetics and feasibility study of medium grade crude oil is studied in the presence of a limestone matrix. Experiments were performed at a heating rate of 10°C min−1, whereas the air flow rate was kept constant at 50 mL min−1 in the temperature range of 20 to 600°C (DSC) and 20 to 900°C (TG). In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures, known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The activation energy values were in the order of 5–9 kJ mol−1 in LTO region and 189–229 kJ mol−1 in HTO region. It was concluded that the medium grade crude oil field was not feasible for a self-sustained combustion process.  相似文献   

9.
A quantum chemical approach based on predominantly covalent “normalized ion energies” has been developed for estimating structures and energies for defect clusters in quenched nonstoichiometric wustite (Fe1?xO). Small defect clusters of zinc blende structure show special stability over other clusters considered. Of these, either a 13:5 or a 16:7 defect cluster (13 or 16 Fe3+ vacancies and 5 or 7 tetrahedral Fe3+ interstitials) have the proper structure and composition to account for the observed P′ and P″ phases in wustite.  相似文献   

10.
After a review of the distribution of vacancies in defect phases resulting from γFe2O3, the authors give several examples drawn from oxidation kinetics and electrical properties, where the vacancies play a basic part due to their concentration as well as their location. The decrease in chemical diffusion coefficient with increase in vacancy extent and the variation of the exponent from the pressure law with the extent of association are dependent on concentration, while the nature of the electron hopping between Fe2+ and Fe3+ ions is governed by the location of vacancies in the two types of sites in the spinel lattice.  相似文献   

11.
Hydrogen species in both SiO2 and Rh/SiO2catalysts pretreated in different atmospheres (H2, O2, helium or air) at different temperatures (773 or 973 K) were investigated by means of1H MAS NMR. In SiO2 and O2-pretreated catalysts, a series of downfield signals at ∼7.0, 3.8–4.0, 2.0 and 1.5–1.0 were detected. The first two signals can be attributed to strongly adsorbed and physisorbed water and the others to terminal silanol (SiOH) and SiOH under the screening of oxygen vacancies in SiO2lattice, respectively. Besides the above signals, both upfield signal at ∼−110 and downfield signals at 3.0 and 0.0 were also detected in H2-pretreated catalyst, respectively. The upfield signal at ∼−110 originated from the dissociative adsorption of H2 over rhodium and was found to consist of both the contributions of reversible and irreversible hydrogen. There also probably existed another dissociatively adsorbed hydrogen over rhodium, which was known to be β hydrogen and in a unique form of “delocalized hydrogen”. It was presumed that the β hydrogen had an upfield shift of ca. −20–−50, though its1H NMR signals, which, having been masked by the spinning sidebands of Si-OH, failed to be directly detected out. The downfield signal at 3.0 was assigned to spillover hydrogen weakly bound by the bridge oxygen of SiO2. Another downfield signal at 0.0 was assigned to hydrogen held in the oxygen vacancies of SiO2 (Si-H species), suffering from the screening of trapped electrons. Both the spillover hydrogen and the Si-H resulted from the migration of the reversible hydrogen and the β hydrogen from rhodium to SiO2 in the close vicinity. It was proved that the above migration of hydrogen was preferred to occur at higher temperature than at lower temperature.  相似文献   

12.
The present investigation focuses on matching cure characteristics of EPDM rubber compound and polyurethane (PU) coating using temperature modulated and pressure differential scanning calorimetry (TMDSC, PDSC). TMDSC provides a detailed and better understanding of the curing process of model rubber system as well as complex automotive rubber compounds. The low level of unsaturation present in EPDM, results in the small heat of vulcanization (2–5 J g–1), which is difficult to accurately measure using conventional differential scanning calorimetry (DSC). Thus, curing of highly filled EPDM compound was investigated using TMDSC. The kinetics of PU curing was monitored using pressure DSC (PDSC), and heat of curing was determined as 4.2 J g–1 at 10°C min–1 heating rate. It is found that complex automotive compounds and the PU coating are curing simultaneously. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The title polymer was obtained electrochemically by the reduction of 4,4'-bis(dibromomethyl)-2,2'-dimethoxybiphenyl under very smooth conditions. The DSC and TG/DTG curves registered at four different heating rates showed that the polymer is stable in air up to 150°C, where smooth degradation starts. Above 300°C, decomposition is fast and exothermic (ΔH= –323 J g–1) . The activation energy (116±4 kJ mol–1 ) was determined by Ozawa's method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The water adsorption properties of sepiolite having dolomite supplied from Eskisehir region and their exchanged forms (K+, Na+, Mg2+ and Ca2+) were investigated. The sepiolite samples were characterized using XRD, TG-DTA, DSC and nitrogen adsorption methods. The temperature ranges were determined for the dehydrations of hydroscopic and zeolitic water as 30–200°C, for the dehydration of the bound water as 250–750°C and for the dehydroxylation of hydroxyls as 810–850°C in the sample. It was observed that the value of percent mass loss for natural and modified samples varied in the range from 36.70 to 39.05%. Two mass loss steps for all samples were observed using a differential scanning calorimetry (DSC) in the range of 30–550°C. Adsorption isotherms for water on natural and modified forms were obtained at pressures up to 2.39 kPa. Uptake of water increased as K-SEP.<Na-SEP.<Mg-SEP.<Ca-SEP. for sepiolite samples at 293 K.  相似文献   

15.
Dehydration of irradiated and non-irradiated asparagine monohydrate was investigated by means of a computer interfaced PerkinElmer 1B DSC in isothermal conditions and static atmosphere. Isothermal runs were performed at 358, 363, 368 and 373 K. Samples were γ-irradiated at room temperature, using a 137Cs source with an activity of 3·1013 Bq and a dose rate of 4·102 Gy h−1, with irradiation times between 8–116 h. Isothermal kinetics were analyzed via the common factorized rate equation. Šesták-Berggren conversion function was found to best fit the experimental data. Of the three fitting parameters, only the one associated with the activation energy was found to follow a coherent variation with the exposure time. Even within this simple model, that makes the activation energy a useful stability criterion within a set of similar samples.  相似文献   

16.
Heating rate effect on the DSC kinetics of oil shales   总被引:1,自引:0,他引:1  
This research was aimed to investigate the combustion and kinetics of oil shale samples (Mengen and Himmetoğlu) by differential scanning calorimetry (DSC). Experiments were performed in air atmosphere up to 600°C at five different heating rates. The DSC curves clearly demonstrate distinct reaction regions in the oil shale samples studied. Reaction intervals, peak and burn-out temperatures of the oil shale samples are also determined. Arrhenius kinetic method was used to analyze the DSC data and it was observed that the activation energies of the samples are varied in the range of 22.4–127.3 kJ mol−1 depending on the oil shale type and heating rate.  相似文献   

17.
Analysis of triadimenol was carried out using deoxyribonucleic acids (DNA) via the resonance light scattering (RLS) technique. After adding triadimenol into aqueous medium of pH 1.72, the RLS of DNA was remarkably quenched. A resonance light scattering peak at 310 nm was found, and the quenched intensity of RLS at this wavelength was proportional to the concentration of triadimenol. The linear range of the calibration curve was approximately 0–3 μg mL−1 with a detection limit (S/N = 3) of 0.07 μg mL−1. The triadimenol in samples of water, cucumber and human serum was determined. The results were satisfactory, and the recovery rates were in the range of 96.3–106.0%, 94.8–105.9% and 92.3–100.5%, respectively. The interaction mechanism was also studied.  相似文献   

18.
Data on the thermal stability of organic materials such as diaminofurazan (DAF) and diaminoglyoxime (DAG) was required in order to obtain safety information for handling, storage and use. These compounds have been shown to be a useful intermediate for the preparation of energetic compounds. In the present study, the thermal stability of the DAF and DAG was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery-differential thermal analysis (TG-DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the DAF and DAG occurs in the temperature ranges of 230–275°C and 180–230°C, respectively. On the other hand, the TG-DTA analysis of compounds indicates that DAF melts (at about 182°C) before it decomposes. However, the thermal decomposition of the DAG started simultaneously with its melting. The influence of the heating rate (5, 10, 15 and 20°C min−1) on the DSC behaviour of the compounds was verified. The results showed that, as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E698 and Ozawa. Based on the values of activation energy obtained by ASTM and Ozawa methods, the following order in the thermal stability was noticed: DAF>DAG.  相似文献   

19.
The thermal decomposition of strontium and barium malonates has been studied isothermally and non-isothermally employing simultaneous TG-DTG-DTA, DSC, XRD and IR spectroscopic techniques. DSC of these malonates has been recorded both in oxygen and nitrogen atmospheres. The decomposition is a single step process and the end product formed is carbonate. The energy of activation and frequency factor values for the decomposition of strontium malonate are 547 kJ mol−1 and 1041 s−1 respectively. The activation energy and frequency factor values for isothermal dehydration of barium malonate sester-hydrate are 57–111 kJ mol−1 and 107–1012 s−1 respectively and the corresponding values for decomposition from DSC are 499.5 kJ mol−1 and 1044 s−1 respectively. The higher thermal stability of strontium malonate as compared to that of barium salt is ascribed to its being anhydrous so that decomposition proceeds without restructuring. Their thermal stabilities have also been compared with that of respective oxalate salts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Data on the thermal stability of drugs was required to obtain information for handling, storage, shelf life and usage. In this study, the thermal stability of two nonsteroidal anti-inflammatory drugs (NSAIDs) was determined by differential scanning calorimetry (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the naproxen and celecoxib occurs in the temperature ranges of 196–300 and 245–359 °C, respectively. The TG/DTA analysis of compounds indicates that naproxen melts (at about 158.1 °C) before it decomposes. However, the thermal decomposition of the celecoxib started about 185 °C after its melting. The influence of the heating rate (5, 10, 15, and 20 °C min−1) on the DSC behavior of the both drug samples was verified. The results showed that, as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by various methods, the following order for the thermal stability was noticed: naproxen > celecoxib. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号