Performance of a semi-continuous polymer enhanced ultrafiltration (PEUF) process has been investigated for the simultaneous recovery of cadmium and lead from binary mixtures. This method uses poly(acrylic acid) as water-soluble polymer to bind these metals. Experiments have taken place in a laboratory-scale system. Loading ratio (mg total metal ions/g polymer) and pH values for separation of cadmium and lead have been studied by means of preliminary experiments, analyzing their influence on permeate flux, metal rejection coefficients and separation factor.The proposed process includes three different stages: total retention of metal ions, selective separation and polymer regeneration. Operating pH values for total retention of metal ions and polymer regeneration processes are 5 and 2, respectively. Selective separation has been investigated working at an intermediate pH value. In this way, if a stream containing 12.5 ppm of each metal ion (1:1 in weight) is treated in the first stage, two different streams enriched in each metal ion are obtained in the second stage. Permeate stream is enriched in cadmium with a proportion near 5:1 in weight, and retentate is enriched in lead with a similar proportion.Finally, the three stages have been modelled successfully with a mathematical model based on conservation equations and chemical reactions taking place in solution. 相似文献
Polymer enhanced ultrafiltration (PEUF) is a newly developed method for the removal of heavy metals from aqueous solutions. This method was applied for the removal of mercury and cadmium with the presence of polyethyleneimine (PEI) as a water soluble polymer. After ultrafiltration experiments for metal–polymer mixtures, two separate streams, namely, retentate and permeate, former of which contains mainly metal–polymer complex and free polymer molecules while latter of which mainly contains free metal ions, were obtained. At the end of PEUF experiments, performance of operation was determined by concentration analyses which was achieved by atomic absorption spectroscopy (AAS) applied in a different way for permeate and retentate streams considering the effect of presence of polymer. For mercury analysis, cold vapor AAS was applied. It was observed that the presence of PEI did not affect the atomic absorption signal when 10% HCl was added to the sample solutions. For calcium and cadmium, flame AAS was used. It was observed that change in PEI concentration results in change in measured concentration of calcium and cadmium. Therefore, two new approaches were developed for accurate measurement of concentrations of calcium and cadmium. It was also observed that presence of other metals did not affect the accuracy of the measurement of a particular metal in the concentration range studied. 相似文献
A semi-continuous process of polymer enhanced ultrafiltration for removal of lead and cadmium has been elaborated. This operation mode would let a better coupling between industrial and laboratory-scale processes. Basically, it includes two stages: (1) metal retention, where we can obtain a permeate stream free of heavy metals; (2) polymer regeneration, where the polymer is regenerated in order to be reused in metal retention stage. In order to work in this way, a control system of permeate and feed stream flows has been installed in a batch laboratory-scale plant. In the first place, more suitable hydrodynamic operating parameters were obtained by ultrafiltration experiments. The influence of pH has been studied to fix the pH for metal retention and polymer regeneration experiments, and the operative polymer binding capacity has been determined to know the metal amount that can be treated. A mathematical model taking into account both conservation equations and competitive reactions which occur in the medium has been established. The development of this mathematical model (which is in good agreement with experimental data) enables to estimate design parameters to dimension pilot and industrial scale installations based on this process. 相似文献
Polyphenylsulfone/multiwalled carbon nanotubes/polyvinylpyrrolidone/1-methyl-2-pyrrolidone mixed matrix ultrafiltration flat-sheet membranes were fabricated via phase inversion process to inspect the heavy metals separation efficacy from aqueous media. Fabricated membranes cross-sectional morphological changes and the topographical alterations were assessed with Scanning electron microscopy (SEM) and atomic force microscopy (AFM). Particularly, MWCNTs assisted membranes exhibited better permeability ability as well as heavy metal removal enactment than virgin membrane. The dead-end filter unit was engaged in current research to examine the permeability and heavy metal removal competence of membranes. With the continuous enhancement of MWCNTs wt% in a polymer matrix, significant enhancement was observed with pure water flux study, from 41.69 L/m2 h to >185 L/m2 h as well as with the heavy metals separation study. Added additive MWCNTs can impact the pore sizes in membranes. The heavy metal separation results achieved, the membrane with 0.3 wt% of MWCNTs (PCNT-3) exhibited >98%, >76% and >72% for Pb2+, Hg2+ and Cd2+ ions, respectively. Overall, MWCNTs introduced PPSU membranes exposed best outcomes with heavy metals contained wastewater treatment. 相似文献
Ceramic–analcime zeolite composite membranes have been synthesized by hydrothermal crystallization of zeolite over clay supports. The zeolite layer is characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and pore size distribution determined using the bubble point technique. The XRD pattern of the zeolite is found to match with JCPDS file #19-1180 which is an analcime-o zeolite of molecular formula NaAlSi2O6·H2O having orthorhombic crystal structure with lattice parameters: a=13.72 Å, b=13.714 Å and c=13.714 Å. In this paper, we report a gas phase nitration scheme, in which we show through the elemental analysis that the modification of entire matrix (and not limited to pores and channels) occurs. The nitrated zeolite was reduced to aminated zeolite membrane by reacting it hydrazine hydrate.
Separation of surfactant (CPC) was performed using these three types (unmodified, nitrated and aminated) of membranes and it showed about 300% increase in the retention of the surfactant after its modification. Its hydrophilic nature also increases as shown by the increase in the permeate flux. In order to find the reason for this enhanced performance, structural analysis of the modified membranes was carried out. The XRD patterns of these were found to be identical and they did not match with those of any of the compounds given in the JCPDS files. The patterns were therefore indexed, using first principle, to find their crystal structure and it was found that the structure changed from orthorhombic for unmodified to tetragonal geometry for the modified zeolites. This also caused about 10% increase in the unit cell volume of the modified zeolites. Anion exchange capacity and the elemental analysis showed that the nitration occurred over the entire zeolite matrix (not restricted to the pores and channels) and on an average about one amine group was present in every second formula unit of the zeolite. This extensive presence of nitrate or amine group in the zeolite matrix makes the modified zeolite membrane highly hydrophilic and may be responsible for the increase in the retention of the surfactant and permeate flux for the modified membranes. 相似文献
Ultrafiltration experiments for the optical resolution of racemic phenylalanine were performed in a solution system containing bovine serum albumin (BSA) and surfactant agents (Triton X-100, Tween 20, sodium dodecyl sulfate), lipid (phosphaticylcholine) and fatty acid (palmitic acid sodium salt). It was found that
-phenylalanine preferentially existed in the permeate at pH 7.0 due to the binding of BSA to
-phenylalanine in the feed and that the separation factors (=concentration ratio of
-isomer to
-isomer in the permeate) increased with a decrease in the BSA solution containing no additives and in the BSA solution containing Triton X-100 or Tween 20. The unusual tendency that the separation factors were less than unity was observed and the separation factors decreased with a decrease in the feed concentration of phenylalanine during the ultrafiltration containing the palmitic acid sodium salt or the phosphatidylcholine. This is caused by the fact that the binding constants of
-phenylalanine to BSA are higher than those of
-phenylalanine in the BSA solution containing the palmitic acid sodium salt or phosphatidylcholine. Since there were found conformational changes of BSA in the presence of palmitic acid sodium salt based on circular dichroism measurements of BSA solution, the conformational changes of BSA were attributed to the higher affinity of
-phenylalanine to BSA than that of
-phenylalanine in the BSA solution containing the palmitic acid sodium salt or phosphatidylcholine. 相似文献
The kinetics of the polymerization induced phase separation of liquid crystal (LC)/monomer mixture has been investigated by means of depolarized light intensity technique and polarized light microscope (PLM). To examine the effect of the electric field, a DC electric field was applied across the mixtures during the phase separation process. The kinetic study indicates that the phase separation process is accelerated when the electric field is applied. The morphologies of the formed polymer dispersed liquid crystal (PDLC) films were observed by PLM. The electric field applied during the phase separation process yields the PDLC with small LC domains and fine morphologies. The clearing temperature (TNI) of the formed PDLC films was measured by the PLM and it is found that the TNI increases with the applied electric field intensity. 相似文献
In this study, a three-zone carousel process based on a proper molecular imprinted polymer (MIP) resin was developed for continuous separation of Cu(2+) from Mn(2+) and Co(2+). For this task, the Cu (II)-imprinted polymer (Cu-MIP) resin was synthesized first and used to pack the chromatographic columns of a three-zone carousel process. Prior to the experiment of the carousel process based on the Cu-MIP resin (MIP-carousel process), a series of single-column experiments were performed to estimate the intrinsic parameters of the three heavy metal ions and to find out the appropriate conditions of regeneration and re-equilibration. The results from these single-column experiments and the additional computer simulations were then used for determination of the operating parameters of the MIP-carousel process under consideration. Based on the determined operating parameters, the MIP-carousel experiments were carried out. It was confirmed from the experimental results that the proposed MIP-carousel process was markedly effective in separating Cu(2+) from Mn(2+) and Co(2+) in a continuous mode with high purity and a relatively small loss. Thus, the MIP-carousel process developed in this study deserves sufficient attention in materials processing industries or metal-related industries, where the selective separation of heavy metal ions with the same charge has been a major concern. 相似文献
A new approach was developed for the magnetic separation of copper(II) ions with easy operation and high efficiency. p‐Mercaptobenzoic acid served as the modified tag of Fe2O3@Au nanoparticles both for the chelation ligand and Raman reporter. Through the chelation between the copper(II) ions and carboxyl groups on the gold shell, the Fe2O3@Au nanoparticles aggregated to form networks that were enriched and separated from the solution by a magnet. A significant decrease in the concentration of copper(II) ions in the supernatant solution was observed. An extremely sensitive method based on surface‐enhanced Raman spectroscopy was employed to detect free copper(II) ions that remained after the magnetic separation, and thus to evaluate the separation efficiency. The results indicated the intensities of the surface‐enhanced Raman spectroscopy bands from p‐mercaptobenzoic acid were dependent on the concentration of copper(II) ions, and the concentration was decreased by several orders of magnitude after the magnetic separation. The present protocol effectively decreased the total amount of heavy metal ions in the solution. This approach opens a potential application in the magnetic separation and highly sensitive detection of heavy metal ions. 相似文献
Both poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) and poly(4-methylstyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolithic columns have been hypercrosslinked and for the first time used to achieve capillary electrochromatographic separations. Although these columns do not contain ionizable functionalities, electroosmotic flow was observed due to adsorption of ions from a buffer solution contained in the mobile phase on the surface of the hydrophobic polymer. An increase of more than one order of magnitude was observed with the use of both monolithic polymers. The hypercrosslinking reaction creates a large surface area thus enabling adsorption of a much larger number of ions. Alkylbenzenes were successfully separated using the hypercrosslinked monolithic columns. 相似文献
Sorption and diffusion processes of 1-mercapto-2-naphthol nickel complex in a polymer matrix upon surface dyeing of polymethyl methacrylate are studied by near-IR spectroscopy as a function of dye solution composition and technological parameters of the process. The optimum solution composition and technological regime are selected. The diffusion coefficient is evaluated.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1289–1293, July, 1995.The authors express their gratitude to Dr. Chem. Sci. N. O. Mchedlov-Petrosyan for a series of valuable remarks in his discussion of this work.This work was carried out with financial support from the International Science Foundation (Grant U2V000). 相似文献
In this study, new bio‐based magnetic molecularly imprinted polymer nanoparticles (∼23 nm) were synthesized from keratin extracted from chicken feathers and methacrylate‐functionalized Fe3O4 nanoparticles for its potential application in separation and removal of bisphenol A from water. The prepared magnetic molecularly imprinted polymer was characterized by Fourier‐transform infrared spectroscopy, field‐emission scanning electron microscopy, thermogravimetric analysis, alternative gradient field magnetometry, and energy‐dispersive X‐ray spectroscopy. The sorption of bisphenol A was investigated by changing the influencing factors such as pH, immersion time, Fe3O4 nanoparticles dosage, and the initial concentration of bisphenol A. Results illustrated that sorption was very fast and efficient (Qm = 600 mg/g) having a removal efficiency of ∼98% in 40 min of immersion. The adsorption process showed better conformity with the Weber−Morris kinetics and the Freundlich isotherm model. The selectivity of bisphenol A by adsorbent was checked in the presence of hydroquinone, phenol, tetrabromobisphenol, and 4,4′‐biphenol as interferences. 相似文献
A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu2+ (product) from Mn2+ and Co2+ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. 相似文献
Phase diagrams for mixtures of liquid crystal (LC)/monomer with and without an external electrical field applied have been established using polarized light microscope (PLM).The (isotropic + nematic) coexistent phase region and (isotropic + isotropic) phase boundary of LC/monomer mixtures were observed to shift upward to higher temperatures when the external electrical field exists. It was found that the electrical field applied during the cross-linking polymerization has a significant influence on the phase diagrams for the LC/polymer mixtures by rendering the coexistent phase regions shift upward to higher temperatures. The influence of the external electrical field on the processes of the isotropic-isotropic phase separation and liquid crystal ordering in PDLC formation has also been investigated. The results revealed that both the processes could be highly accelerated by the electrical field. 相似文献
The thickness of nanolayers formed by adsorption from dilute and semi-dilute solutions on a solid SiO2 surface has been estimated from adsorption isotherms and atomic force microscopy (AFM) measurements for polystyrene, poly(butyl methacrylate), and their mixtures. The thickness of the adsorption layers depends strongly on the adsorption conditions and is controlled by several features of the adsorbing entities. In a low-concentration regime of adsorption, the length of polymer chains and the nature of their interaction with the substrate are the most important factors controlling the adsorption process. Above the critical concentration C*, macromolecular clusters (aggregates of several overlapping chains) are formed in a solution as a result of polymer chains self-assembly. Therefore, the final adsorption layer thickness is determined mainly by the size of the clusters in this concentrated regime of adsorption. We also demonstrate that in the case of polymer mixtures, the adsorption leads to formation of mosaic structures with alternation of the polymeric components in plane of the substrate and a characteristic domain size of approximately 200 nm for each of the components. AFM study reveals that the adsorbed layers are fractal structures whose fractal dimensions depend on the type of the polymer and the adsorption process. We demonstrate therefore that the structure of nanolayers of polymers and their mixtures on the solid surface can be regulated by variation of the adsorption conditions. 相似文献
Palladium(II) ion-imprinted polymer (IIP) materials were synthesized by thermally polymerizing the ternary complexes of palladium(II) with amino (AQ) or hydroxy (HQ) or mercapto (MQ) derivatives of quinoline and 4-vinyl-pyridine. The functional and crosslinking monomers used during polymerization were 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA). 2,2′-Azobisisobutyronitrile (AIBN) and 2-methoxy ethanol were used as the initiator and porogen, respectively. The resulting polymer materials were dried in an oven at 80 °C, ground and sieved to obtain IIP particles which were then subjected to leaching with 50% (v/v) HCl to obtain the leached palladium(II) IIP particles. Control polymer (CP) particles were also prepared by following the above procedure described for IIP particles. The CP particles, unleached and leached AQ-based IIP particles were then characterized by IR, XRD and microanalysis studies. Analytical studies such as preconcentration of palladium(II) from dilute aqueous solutions and separation studies in the presence of selected noble and base metals which co-exist with palladium(II) in its ore or mineral deposits were systematically studied using CP and IIP particles and are compared. AQ-based IIP particles gave higher percent extraction and selectivity coefficients compared to HQ- or MQ-based IIP particles. Five replicate determinations of 25 μg of palladium(II) present in 500 ml of aqueous solution, when subjected to preconcentration and determination by iodide-Rhodamine 6G procedure gave a mean absorbance of 0.104 with a relative standard deviation of 2.25%. The detection limit corresponding to three times the standard deviation of the blank was found to be 5.0 μg of palladium(II) per litre. The rebinding studies using AQ-, HQ- and MQ-based IIPs were carried out and were fitted to the different adsorption isotherm models, viz. Langmuir (L), Freundlich (F) and Langmuir-Freundlich (LF). These adsorption models were used for the evaluation of binding parameters and in elucidating the nature and type of bonding in the IIPs. The results of rebinding experiments showed discrimination between the three IIPs based on the donor atoms of the ligands. 相似文献
We developed novel separation media for hydroxy polychlorinated biphenyls (HO-PCBs) using the molecular imprinting techniques. The results of evaluation for the molecularly imprinted polymers (MIPs) by the liquid chromatography (LC) suggested that MIPs had selective separation ability for certain HO-PCB analogues. The results of the LC evaluations and molecular modeling indicated that the molecular volumes and pKa values of template molecules were related with the retention factor of HO-PCBs. Additionally, according to the detail evaluation toward the selective separation behaviors of MIPs, these HO-PCB analogues have low pKa values dependent on their chemical structures. In other words, the prepared MIPs had selective recognition ability against the analogues, which have an OH group on a phenyl carbon and two chlorine atoms on the both neighboring carbons of the carbon attached with the OH group. Moreover, these analogues may have a potential for thyroid hormone activities so that we attempted to separate these analogues directly from mixtures of HO-PCBs using a prepared MIP. 相似文献