首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, the effect of different neutral polymers on the self-assemblies of hyperbranched poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) has been investigated at different ionization degrees of the polyelectrolyte molecules. The investigated uncharged polymers were poly(ethyleneoxide), poly(vinylpyrrolidone) and dextran samples of different molecular mass. Dynamic light scattering and electrophoretic mobility measurements demonstrate that the high molecular mass PEO or PVP molecules adsorb considerably onto the surface of the PEI/SDS nanoparticles. At appropriate concentrations of PVP or PEO, sterically stabilized colloidal dispersions of the polyelectrolyte/surfactant nanoparticles with hydrophobic core and hydrophilic corona can be prepared. These dispersions have considerable kinetic stability at high ionic strengths where the accelerated coagulation of the PEI/SDS nanoparticles results in precipitation in the absence of the neutral polymers. In contrast, the addition of dextran does not affect considerably the kinetic stability of PEI/SDS mixtures because of its low adsorption affinity towards the surface of the polyelectrolyte/surfactant nanoparticles.  相似文献   

2.
We report experiments on the stability of aqueous mixtures of charged colloidal magnetite and charged silica and silica covered with alumina particles of similar size. First, positively charged magnetite dispersions were mixed with negatively charged silica dispersions at pH 4, at different volume ratios and low colloid volume fractions, producing mixtures which were stable over a period of weeks despite the expected electrostatic attraction between the oppositely charged particles. When magnetite particles were mixed with positively charged silica covered with alumina at pH 4 under exactly the same conditions, some of the systems separated to form a magnetite sediment. When the volume fraction of the initial dispersions was increased, the behavior of the mixtures was the opposite: positive magnetite/negative silica mixtures were unstable at intermediate volume ratios. The unexpected behavior of the mixtures was investigated by means of electrophoretic mobility, initial susceptibility, and dynamic light scattering measurements as well as sedimentation experiments.  相似文献   

3.
The effect of different mixing protocols on the charged nature and size distribution of the aqueous complexes of hyperbranched poly(ethylene imine) (PEI) and sodium dodecyl sulfate (SDS) was investigated by electrophoretic mobility and dynamic light scattering measurements at different pH values, polyelectrolyte concentrations, and ionic strengths. It was found that at large excess of the surfactant a colloidal dispersion of individual PEI/SDS nanoparticles forms via an extremely rapid mixing of the components by means of a stop-flow apparatus. However, the application of a less efficient mixing method under the same experimental conditions might result in large clusters of the individual PEI/SDS particles as well as in a more extended precipitation regime compared with the results of stop-flow mixing protocol. The study revealed that the larger the charge density and concentration of the PEI, the more pronounced the effect of mixing becomes. It can be concluded that an efficient way to avoid precipitation in the solutions of oppositely charged polyelectrolytes and surfactants might be provided by extending the range of kinetically stable colloidal dispersion of polyelectrolyte/surfactant nanoparticles via the application of appropriate mixing protocols.  相似文献   

4.
The transmittance of polyethylenimine (PEI)/cinnamic acid (CA) aqueous mixture was close to zero at 20–40°C, and it began to increase around 40°C due to the disassembling of the self-assembly of the PEI/CA conjugate. As the concentration of sodium dodecyl sulfate (SDS) increased, the increasing rate of the transmittance decreased and the onset temperature increased, indicating that the self-assembly of the PEI/CA conjugate became more stable against heat with the aid of SDS. Tween 20 could also suppress the thermally induced disassembling of the self-assembly, possibly because poly(ethylene oxide) chains of the surfactant could be entangled with the PEI chains. Dodecyltrimethyl ammonium bromide (DTAB) did not have an effect on the temperature-dependent self-assembling phenomena as much as SDS and Tween 20 did. The interfacial tension of the PEI/CA/SDS aqueous mixture and that of the PEI/CA/Tween 20 aqueous mixture at 70°C were lower than the respective tensions observed at 25°C. On the contrary, the interfacial tension of the PEI/CA/DTAB aqueous mixture at 70°C was higher than that observed at 25°C, possibly because the PEI/CA conjugate could lose its surface activity at the higher temperature due to the adsorption of DTAB on CA molecules.  相似文献   

5.
The association between a highly branched polyelectrolyte with ionizable groups, polyethylene imine (PEI), and an anionic surfactant, sodium dodecyl sulfate (SDS), has been investigated at two pH values, using small-angle neutron and light scattering. The scattering data allow us to obtain a detailed picture of the association structures formed. Small-angle neutron scattering (SANS) measurements in solutions containing highly charged PEI at low pH and low SDS concentrations indicate the presence of disklike aggregates. The aggregates change to a more complex three-dimensional structure with increasing surfactant concentration. One pronounced feature in the scattering curves is the presence of a Bragg-like peak at high q-values observed at a surfactant concentration of 4.2 mM and above. This scattering feature is attributed to the formation of a common well-ordered PEI/SDS structure, in analogue to what has been reported for other polyelectrolyte-surfactant systems. Precipitation occurred at the charge neutralization point, and X-ray diffraction measurements on the precipitate confirmed the existence of an ordered structure within the PEI/SDS aggregates, which was identified as a lamellar internal organization. Polyethylene imine has a low charge density in alkaline solutions. At pH 10.1 and under conditions where the surfactant was contrast matched, the SANS scattering curves showed only small changes with increasing surfactant concentration. This suggests that the polymer acts as a template onto which the surfactant molecules aggregate. Data from both static light scattering and SANS recorded under conditions where SDS and to a lower degree PEI contribute to the scattering were found to be consistent with a structure of stacked elliptic bilayers. These structures increased in size and became more compact as the surfactant concentration was increased up to the charge neutralization point.  相似文献   

6.
We have shown recently (Binks, B. P.; Rodrigues, J. A.; Frith, W. J. Langmuir 2007, 23, 3626) that, for mixtures of negatively charged silica nanoparticles and cationic surfactant, oil-in-water emulsions are most stable to creaming and coalescence at conditions of maximum flocculation of particles by surfactant in aqueous dispersions alone. Here, we extend the idea using positively charged silica particles in mixtures with anionic surfactant.  相似文献   

7.
Solvent isotope effects on the interaction between the hyperbranched cationic polyelectrolyte, polyethylene imine (PEI), and the anionic surfactant sodium dodecyl sulfate (SDS) were investigated using potentiometric titration and eletrophoretic mobility measurements. In the basic pH range, a significantly higher fraction of the amine groups was found to be protonated when the PEI was dissolved in D2O compared to H2O at the same pH/pD. The difference in polymer charge in the two solvents decreases gradually with decreasing pH, and it completely diminishes at around pH = 4. Electrophoretic mobility measurements of PEI/SDS complexes at different pH values correlated very well with these observations. At pH/pD approximately 9 a much higher mobility of the PEI/SDS complexes was found in D2O than in H2O at low surfactant concentrations, and the charge neutralization point shifted to a considerably larger surfactant concentration in heavy water. These results can be explained by the significantly higher charge density of the PEI in D2O compared to H2O. However, at the natural pH/pD as well as at pH = 4 and pD = 4 conditions the PEI molecules have roughly equal charge densities, which result in very similar charged characteristics (mobilities) of the PEI/SDS complexes as well as the same charge neutralization SDS concentration. It can be concluded that extreme care must be taken in the general analysis of those experiments in which weak polyelectrolyte/surfactant aggregates are investigated in heavy water, and then these observations are correlated with structures of the same system in water.  相似文献   

8.
Mixing of polyelectrolyte solutions with solutions of oppositely charged surfactants usually leads to phase separation in a certain concentration range. However, since the charge-neutralized polyelectrolyte/surfactant nanoparticles might be utilized as versatile nanocarriers of different substances, it would be desirable to prevent their aggregation for some applications. As it was revealed in earlier investigations, the complete suppression of precipitation may be achieved only in mixtures of ionic surfactants and appropriate copolymer polyelectrolytes with nonionic and ionic blocks. In this work, we present a method that could prevent phase separation in mixtures of homopolyelectrolytes and oppositely charged surfactants. Specifically, it is shown that nonaggregating electroneutral nanocomplexes of branched poly(ethylenimine) (PEI) and sodium dodecyl sulfate (SDS) can be prepared in the presence of the amphiphilic triblock copolymer Pluronic F108, provided that an adequate mixing protocol is used for preparation of the PEI/SDS/F108 mixtures.  相似文献   

9.
In this work, aqueous dispersions of PolyEtherKetoneKetone (PEKK) oligomers were obtained by an emulsion/dispersion solvent evaporation technique. The PEKK oligomers were synthesized by a Friedel–Crafts acylation with a number average degree of polymerization of 4. The synthesized PEKK oligomers had very good thermal stability and spontaneously formed a stable dispersion of swollen micrometric fibers in chloroform. After sonication of the chloroform dispersion in water in the presence of sodium dodecyl sulfate (SDS) and evaporation, we obtained aggregated particles with a mean diameter between 120 and 160 nm, decreasing linearly with the PEKK concentration. The most stable dispersions were obtained with 0.5% wt of surfactant and, at a fixed concentration of SDS, the stability decreased when the PEKK concentration was increased. The different dispersions of PEKK in water were very stable and, after water evaporation, formed homogeneous films for high-performance coating.  相似文献   

10.
聚乙烯亚胺表面改性硅藻土及其对苯酚吸附特性的研究   总被引:3,自引:0,他引:3  
使用紫外吸收光度法研究了硅藻土对聚乙烯亚胺(PEI)的等温吸附;采用浸渍法,用PEI对硅藻土进行了表面改性;使用4-氨基安替比林光度法研究了经PEI表面改性的硅藻土对苯酚的捕集行为.研究结果表明,凭借强烈的静电相互作用,表面带负电荷的硅藻土粉体对阳离子性大分子PEI具有很强的吸附能力,等温吸附满足Freundlich吸附方程;经PEI表面改性后,硅藻土粉体表面的电性发生了根本性改变,且等电点由pH=2.0移至pH=10.5;在中性溶液中,改性粉体通过氢键作用与静电相互作用的协同,对水溶液中的苯酚会产生很强的捕集作用,饱和吸附量可达92 mg/g;在酸性溶液中改性粉体通过氢键相互作用,对水溶液中的苯酚产生一定的吸附作用,但由于PEI分子链高度的质子化,氮原子对苯酚的氢键相互作用很弱,吸附量很低.  相似文献   

11.
Synthetic vesicles are formed by cationic and anionic surfactants, didodecyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS). The morphology, size, and aqueous properties of cationic/anionic mixtures are investigated at various molar ratios between cationic and anionic surfactants. The charged vesicular dispersions made of DDAB/SDS are contacted or mixed with negatively charged polyelectrolyte, poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSAMA), to form complexes. Depending on DDAB/SDS molar ratio or PSSAMA/vesicle charge ratio, complexes flocculation or precipitation occur. Characterization of the cationic/anionic vesicles or complexes formed by the catanionic vesicles and polyelectrolytes is performed by transmission electron microscope (TEM), dynamic light scattering (DLS), conductivity, turbidity, and zeta potential measurements. The size, stability, and the surface charge on the mixed cationic/anionic vesicles or complexes are determined.  相似文献   

12.
Interaction of sodium dodecyl sulfate (SDS) with the cationic polyelectrolyte poly(ethyleneimine) (PEI) was investigated in this study. Turbidity measurements were performed in order to analyze the interaction and complex formation in bulk solution as a function of polymer concentration and pH. Surface tension measurements were made to investigate the properties of SDS/PEI/water mixtures at air/solution interface. Results revealed that SDS/PEI complexes form in solution depending on the surfactant and polymer concentration. A decrease was observed in surface tension values in the presence of SDS/PEI mixtures compared to the values of pure SDS solutions. Both solution and interfacial properties exhibited pH dependent behavior. A shift was seen in the critical micelle concentration of SDS solutions as a function of PEI concentration and solution pH. Monovalent and divalent salt additions showed some influence on the interfacial properties of SDS solutions in the presence of PEI.  相似文献   

13.
We report a study of mixtures of initially oppositely charged particles with similar size. Dispersions of silica spheres (negatively charged) and alumina-coated silica spheres (positively charged) at low ionic strength, mixed at various volume ratios, exhibited a surprising stability up to compositions of 50% negative colloids as well as spontaneous repeptization of particles from the early-stage formed aggregates. The other mixtures were found to contain large heteroaggregates, which were imaged using cryogenic electron microscopy. Electrophoretic mobility, electrical conductivity, static and dynamic light scattering and sedimentation were studied as a function of volume fraction of the mixed dispersions to investigate particle interactions and elucidate the repeptization phenomenon.  相似文献   

14.
Aqueous dispersions of lightly cross-linked poly(4-vinylpyridine)/silica nanocomposite microgel particles are used as a sole emulsifier of methyl myristate and water (1:1 by volume) at various pH values and salt concentrations at 20 degrees C. These particles become swollen at low pH with the hydrodynamic diameter increasing from 250 nm at pH 8.8 to 630 nm at pH 2.7. For batch emulsions prepared at pH 3.4, oil-in-water (o/w) emulsions are formed that are stable to coalescence but exhibit creaming. Below pH 3.3, however, these emulsions are very unstable to coalescence and rapid phase separation occurs just after homogenization (pH-dependent). The pH for 50% ionization of the pyridine groups in the particles in the bulk (pK(a)) was determined to be 3.4 by acid titration measurements of the aqueous dispersion. Thus, the charged swollen particles no longer adsorb at the oil-water interface. For continuous emulsions (prepared at high pH with the pH then decreased abruptly or progressively), demulsification takes place rapidly below pH 3.3, implying that particles adsorbed at the oil-water interface can become charged (protonated) and detached from the interface in situ (pH-responsive). Furthermore, at a fixed pH of 4.0, addition of sodium chloride to the aqueous dispersion increases the degree of ionization of the particles and batch emulsions are significantly unstable to coalescence at a salt concentration of 0.24 mol kg(-1). The degree of ionization of such microgel particles is a critical factor in controlling the coalescence stability of o/w emulsions stabilized by them.  相似文献   

15.
Mixing of oppositely charged surfactants and polyelectrolytes in aqueous solutions can lead to associative phase separation, where the concentrated phase is a viscous liquid, gel, or precipitate. In recent years, this phenomenon has been exploited to form gel-like particles, ranging from approximately 100 to 4000 microm in diameter, whose stability depends on equilibrium phase behavior. As the sample composition is varied, these particles either remain stable (in a two-phase mixture) or dissolve over time. Here, we present the formation of reversibly swelling gel particles from mixtures of N,N,N-trimethylammonium-derivatized hydroxyethyl cellulose (JR-400) and sodium dodecyl sulfate (SDS), whose swelling is controlled by the ambient solution conditions. The effects of cross-linking density and surfactant concentration are investigated by gravimetry and confocal microscopy. The resulting particles have a core/shell morphology and undergo reversible swelling/collapse transitions which, depending on the cross-link density, can be either gradual or abrupt with changing SDS concentration.  相似文献   

16.
The role of the polyelectrolyte, poly(ethyleneimine), PEI, and the electrolytes NaCl and CaCl(2), on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, LAS, at the air-water interface have been investigated by neutron reflectivity and surface tension. The surface tension data for the PEI/LAS mixtures are substantially affected by pH and the addition of electrolyte, and are consistent with a strong adsorption of surface polymer/surfactant complexes down to relatively low surfactant concentrations. The effects are most pronounced at high pH, and this is confirmed by the adsorption data obtained directly from neutron reflectivity. However, the effects of the addition of PEI and electrolyte on the LAS adsorption are not as pronounced as previously reported for PEI/SDS mixtures. This is attributed primarily to the steric hindrance of the LAS phenyl group resulting in a reduction in the ion-dipole attraction between the LAS sulfonate and amine groups that dominates the interaction at high pH.  相似文献   

17.
The aggregation in dispersions of iron oxides was studied by dynamic light scattering and by TEM. In spite of high absolute value of zeta potential induced by specific adsorption of alkyl (C12–C16) sulfates, the particles showed substantial degree of aggregation. The particle size distributions observed in SDS-stabilized dispersions by dynamic light scattering were sensitive to the impurities contained in reagent-grade SDS. Namely, different specimens of reagent-grade SDS produced very different particle size distributions at otherwise identical experimental conditions.  相似文献   

18.
The polyelectrolyte poly(ethylenenimine), PEI, is shown to strongly influence the adsorption of the anionic-nonionic surfactant mixture of sodium dodecyl sulfate, SDS, and monododecyl hexaethylene glycol, C(12)E(6), at the air-solution interface. In the presence of PEI, the partitioning of the mixed surfactants to the interface is highly pH-dependent. The adsorption is more strongly biased to the SDS as the pH increases, as the PEI becomes a weaker polyelectrolyte. At surfactant concentrations >10(-4) M, the strong interaction and adsorption result in multilayer formation at the interface, and this covers a more extensive range of surfactant concentrations at higher pH values. The results are consistent with a strong interaction between SDS and PEI at the surface that is not predominantly electrostatic in origin. It provides an attractive route to selectively manipulate the adsorption and composition of surfactant mixtures at interfaces.  相似文献   

19.
We have investigated the potential of utilizing naturally occurring spore particles of Lycopodium clavatum as sole emulsifiers of oil and water mixtures. The preferred emulsions, prepared from either oil-borne or aqueous-borne dispersions of the monodispersed particles of diameter 30 microm, are oil-in-water. The particles act as efficient stabilizers for oils of different polarity. Droplets as large as several millimeters are stable to coalescence indefinitely, despite the low coverage of interfaces by particles observed microscopically. Consistent with the emulsion findings, we discover that particles spontaneously adsorb to bare oil-water interfaces of single drops from oil dispersions, whereas adsorption is less spontaneous and extensive from aqueous dispersions. Monolayers of the spore particles at both air-water and oil-water planar interfaces contain particles in an aggregated state forming clusters and chains. The influence of particle concentration, oil/water ratio, and additives in the aqueous phase is studied.  相似文献   

20.
The colloidal stability of TiO2 dispersions in aqueous solutions was studied. Aqueous solutions of ATLAS G-3300 (1.57 x 10(-3) mol/l), TRITON X-100 (5 x 10(-5) mol/l), and PMAA (4 x 10(-6) and 5.81 x 10(-3) mol/l) have been used as medium for redispergation of TiO2 particles. Stability of dispersions was investigated at different pH values by two different methods. By using analytical centrifuge the sedimentation velocity of TiO2 particles was directly measured and by means of light scattering the particle size of dispersed particles has been monitored. Combination of these two methods allowed determination of the aggregation degree of TiO2 particles as well as structure of the aggregates formed in aqueous phase. It has been found that redispergation process does not provide complete separation of virgin TiO2 particles. Even in the case of stable dispersions some aggregates were found, which consisted of 2-4 virgin TiO2 particles. With increasing colloidal stability of dispersions aggregates appear to be spherically shaped. In the system where TRITON X-100 was used, formation of secondary aggregates by fusion of primary ones was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号